Las medidas ideales
y el problema de entender

la mecanica cuantica

;Cudl es el origen fisico de la mecanica cuantica? Segln un resultado reciente, las correlaciones que
permite la teorfa cuantica para medidas ideales son indistinguibles de las que se observarian en un
universo regido por el principio de que «la Gnica ley es que no hay ninguna ley».

no de los problemas mas antiguos de la fisica mo-

derna es de dénde viene la mecanica cuantica. La

observacién de la importancia que tienen en Fisica

las cantidades conservadas y los observables que
se pueden medir repetidamente sin que su resultado cam-
bie nos lleva a preguntarnos cudl es la teoria de probabili-
dades mas general posible para los eventos producidos por
medidas de observables de este tipo. Aqui introducimos las
definiciones y herramientas para demostrar que, sorpren-
dentemente, esa teoria mas general posible es la teoria cuan-
tica de probabilidades.

Introduccidn

En 1964, Richard Feynman pronuncié una frase que sigue
causando revuelo: “Creo que puedo decir con seguridad que
nadie entiende la mecanica cuantica” [1]. Se referia a que na-
die es capaz de derivar la mecanica cudntica a partir de unos
principios fisicos basicos, tal y como si se puede hacer con, por
ejemplo, la teoria de la relatividad especial [2]. La situacién
ha cambiado bastante en los dltimos 20 afios.

Un primer paso ha sido darse cuenta de que la mecénica
cuantica estd formada por dos capas distintas. La primera
capa es una teoria abstracta de probabilidades que puede
estudiarse y que deberia ensefiarse [3, 4] independiente-
mente de sus aplicaciones en Fisica. Esta capa fundamental
es un conjunto de reglas para predecir las distribuciones de
probabilidad de los resultados de una serie de posibles me-
didas futuras sobre (copias similarmente preparadas de) un
sistema fisico. La teoria no habla de propiedades del sistema
fisico, sino de las distribuciones de probabilidad de observa-
bles que podrian medirse haciendo interaccionar el sistema
fisico con otros dispositivos. El espacio muestral de esta teo-
ria esta formado por sucesos elementales del tipo: “al medir
el observable A sobre un sistema preparado en el estado ¢ el
resultado es a”, que denotaremos por (A = a|p).

Lo raro de esta teoria es como se representan matemati-
camente en ella los estados, observables y sucesos, y como
se usan estas representaciones para calcular probabilidades.
En su formulacién mas sencilla, las tres reglas en las que se
basa la teoria son (véase, p. €j., [5]):

1. Cada “estado cudntico” de maxima informacién de un “sis-
tema cuantico”! se representa por un rayo en un espacio
de Hilbert complejo (vectores proporcionales representan
el mismo estado). En ausencia de reglas de superselec-
cién, cualquier rayo representa un estado. Cada simetria
del espacio de estados cuanticos se representa por una
transformacién unitaria o antiunitaria.

2. Cada observable se representa por un operador autoad-
junto. Los unicos resultados posibles al medir un obser-
vable son los autovalores del operador que lo representa
(recuérdese que los autovalores de un operador autoad-
junto son nimeros reales). En ausencia de reglas de su-
perseleccion, cualquier operador autoadjunto representa
un observable.

3. Regla de Born. Si el estado es el representado por |¢@) y se
hace una medida del observable maximal A (representado
por un operador autoadjunto de espectro no degenerado), la
probabilidad de que el resultado sea el asociado al autovalor
aesp(A=a|p)=|{A=alp)|? donde (A = a| es el transpuesto
del complejo conjugado de |A = a), que es al autovector del
operador asociado a A correspondiente al resultado/auto-
valor a (recuérdese que los autovectores de un operador
autoadjunto son ortogonales entre sf).

Esta teoria de probabilidades es a lo que, de aqui en ade-

lante, llamaremos teoria cudntica (TC) (como, p. €j., [7, 8]).
La segunda capa de la mecénica cudntica esta formada por

las herramientas que se usan para adaptar la TC a problemas

de mecanica y electromagnetismo. En esta capa estan, por
ejemplo, las reglas de cuantizacion, las simetrias y cantida-

! La definicién de un “sistema cuantico” requiere tanto un sistema fisico
como un dispositivo de medida. El “estado cuantico” que se asocia a un
sistema fisico es relativo al dispositivo de medida con el que podria inte-
ractuar el sistema fisico en el futuro. Por ejemplo, un fotén individual es un
sistema fisico, pero todavia no es un sistema cuantico. Si se hiciese pasar el
fotoén por una matriz de divisores de haz con d salidas con un detector de
fotones en cada una de ellas, como se describe en [6], entonces el conjunto
foton-dispositivo definirfa un sistema cudntico de dimensién d o qudit.
Noétese que el que el sistema cuantico sea un qubit (d = 2) o un qudit de
dimension superior no es una propiedad intrinseca del fotén, sino que
depende del dispositivo que se use.
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des conservadas, los hamiltonianos, la ecuacion
de Schrodinger, y las reglas de superseleccion. En
este articulo nos concentraremos en la primera
capa, en la creencia de que es ahi donde reside la
rareza de la mecanica cuantica.

Para los que nunca han oido hablar de la me-
canica cudntica, toparse con ella por primera vez
produce enorme extrafieza. ;De donde salen esa
representaciéon matematica y esas reglas para
calcular probabilidades? La mayoria de los que la
usan y la ensefian se han acostumbrado a que la
teoria siempre dé respuestas correctas. Quiza por
eso, ni cuestionan su validez ni se hacen la pregun-
ta que corroia a John Wheeler: “;De donde viene
la mecénica cuantica?” [9]. Si no contestamos esa
pregunta, seguira siendo cierto que usamos y en-
seflamos la mecdanica cuantica sin entenderla.

Pero, si es cierto que la rareza de la mecanica
cuantica reside en la primera capa, o sea, la TC, ;es
posible derivar la TC a partir de principios fisicos?

Desde 2001, existen varias derivaciones o “re-
construcciones” de la TC a partir de axiomas mas
o menos sencillos, p. €j.,[7, 8, 10, 11]. Tipicamente
se critican estas derivaciones diciendo que no se
basan en principios fisicos [12], que incluyen axio-
mas dudosos [13], y que no han ayudado a enten-
der de donde viene la TC, ni resuelven el problema
de la interpretacion de la mecanica cuantica [14].
Sin embargo, el marco en el que se han realizado
estas derivaciones si que nos ha enseflado muchas
cosas interesantes.

La idea comtn en todos estos trabajos es con-
siderar que la TC es una teoria de probabilida-
des que forma parte de un universo mucho mas
grande de posibles teorias de probabilidades.
Lo que hacen estas derivaciones es ir parcelan-
do ese universo mediante axiomas, hasta que la
Unica superviviente es la TC. Sin embargo, en ese
mismo marco, otros trabajos han seguido una es-
trategia muy interesante: preguntarse qué signi-
fican operacionalmente determinadas reglas de
la TC cuando se analizan sin saber nada de la TC
(p. €j., [15, 16]).

En este articulo vamos a hablar precisamente
de un resultado que nace de adoptar esta perspec-
tiva. Dejaremos de lado las matematicas de la TC
y nos preguntaremos qué ve una persona en un
universo que se rige por esas matematicas.

Observables compatibles y medidas ideales
Si medimos el nimero de extremidades de un ser
humano, probablemente obtendremos “cuatro”
como resultado. Y este resultado no cambia si
repetimos la medida. No cambia incluso cuando,
entre la primera y la segunda medida, medimos el
numero de ojos del ser humano. Podemos, inclu-
so, medir a la vez ambos observables (el nimero
de extremidades y el nimero de ojos) sin que la
medida de uno de ellos afecte al resultado de la
medida del otro.
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Un observable se puede medir de formas dis-
tintas. Por eso hay que distinguir entre el obser-
vable y su medida. El observable agrupa a todas
las medidas que producen la misma distribucién
de probabilidad para cada estado inicial. Lo que
pase con el sistema fisico después de que se haya
generado el resultado es otro cantar.

La Ciencia parece tener un particular interés
por las cosas que no cambian. Y, en el caso de las
medidas, por aquellas que arrojan resultados per-
sistentes y que permiten seguir haciendo medidas
que, a su vez, arrojan resultados persistentes.

Este interés es el que lleva a la siguiente defi-
nicién:

Dos observables, A y B, son compatibles si existe
un observable C tal que, para todo estado ¢, para
cada resultado a su probabilidad cumpla p(4 =
alg) = 3., p(C = c,|p), y para cada resultado b su
probabilidad cumpla p(B = b|@) = ¥, p(C = ¢,| ).
Sino existe C, entonces se dice que los observables
Ay B son incompatibles.

Si Ay B son observables compatibles, se dice
que cada uno de ellos es una version de menor reso-
lucién del observable C definido antes. Y entonces
C se dice que es un refinamiento de A (y de B).
Dicho de otro modo, dos observables son compa-
tibles cuando tienen un refinamiento comun.

Se dice que una medida de un observable per-
turba a otro observable cuando la primera cambia
la distribucién de probabilidad del segundo. La de-
finicién de incompatibilidad implica que cualquier
medida de un observable perturba los observa-
bles que son incompatibles con él. Pero el que dos
observables sean compatibles no garantiza que
cualquier medida de uno de ellos no perturbe al
otro. Por ello es importante identificar qué obser-
vables compatibles se pueden medir uno tras otro
sin que la medida (menos perturbativa posible) de
cada uno de ellos perturbe (sea cual sea el esta-
do inicial) a los otros, con lo que el orden en que
se midan los observables compatibles se volveria
irrelevante.

Esto nos lleva a dos conceptos clave. El primero,
es el de medida ideal de un observable.

Una medida ideal de un observable es aquella
que no perturba ningin observable compatible.

Detengdmonos a examinar algunas consecuen-
cias de esta definicion:

1. Una medida ideal de un observable arroja el
mismo resultado al repetirla sobre el mismo
sistema fisico. Véase la Figura 1 (a).

2. Unamedida ideal de un observable no perturba
las distribuciones de probabilidad de medidas
posteriores de observables compatibles. Véase
la Figura 1 (b).

3. En particular, una medida ideal de A no pertur-
ba una medida posterior de cualquier refina-
miento de A.

El segundo concepto clave es el de observable
ideal.
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Un observable ideal es aquel que cumple que
tanto él como sus versiones de menor resolucién
se pueden medir idealmente.

Una consecuencia de esta definicion es que:

4. Un observable ideal X con d posibles resultados,
a, b, ..., ¢, siempre se puede medir mediante una
secuencia de d medidas ideales: una de ellas co-
rrespondiente a la versién de menor resoluciéon
de X con resultados a y a (“no a”), otra corres-
pondiente a la version de menor resolucion de
Xconresultados by b,..., y otra correspondien-
te a la version de menor resolucion de X con
resultados cy ¢. Véase la Figura 1 (c). El orden
en el que se miden idealmente las versiones de
menor resolucion es irrelevante.

Todas las magnitudes de la fisica clasica son
observables ideales.

La teoria de probabilidades para observables
ideales

Sin embargo, en principio, la mecanica cuantica
es algo completamente distinto de la fisica clasi-
ca. ;Por qué entonces defendemos la tesis de que,
para entender la TC, hay que fijarse en los obser-
vables ideales?

Déjenme adelantarles la respuesta: porque la
TC es una teoria de probabilidades para los resul-
tados de medidas ideales de observables ideales.

Para demostrar esto, que espero sea una afir-
macién en la que muchos discrepen, vamos a
recordar dos “incidentes”, no muy conocidos y
ambos relativamente recientes, en la historia de
la mecanica cuantica.

En 1932, John von Neumann publicé la que se
considerala biblia de la teoria de la medicién en me-
canica cuantica [17]. Es ahi donde queda claramente
formulada la correspondencia entre probabilidades
de eventos y espacios de Hilbert complejos. Curio-
samente, no es hasta 1951 que alguien, Gerhart Lii-
ders [18] (Figura 2), se da cuenta de que algo muy
importante esta mal en el libro de von Neumann: la
prescripcion de cudl es el estado cuantico tras una
medida representada por un operador autoadjunto
esinconsistente con laregla de Born. Liiders corrige
este error y proporciona la férmula que, desde en-
tonces, se considera la correcta?.

.Y por qué es tan importante la correccién de
Liiders? Porque la transformacion del estado que

2 Por ejemplo, segtin la regla de Liiders, si el estado inicial es
el descrito por \/i_?, % y {nedimos el observable representado
por el proyector sobre 8 y obtenemos el resultado asociado
al autovalor 1, entonces el estado después de la medida es el
descrito por ((1)) Pero si el resultado es el asociado al autova-
lor 0, entonces el estado después de la medida es el descrito
por \/l_z@) En ambos casos el estado tras la medida es de maxi-
ma informacién. Sin embargo, segiin von Neumann, en el se-

gundo caso el estado tras la medida seria un estado mezcla.

(@)

— = A
(b)
L L A L
p(B=b|p) p(B=blo)
(c)
L Ly A - Ly - ..
a b c a a b b c C

propone Liiders corresponde al unico proceso

que puede asociarse a una medicion de un obser-

vable A que no perturba una medicién posterior
de cualquier refinamiento de A. Es decir, la trans-
formacion de Liiders es la que corresponde a una

medida ideal del observable 4 [15, 16].

Esto implica que no es suficientemente preciso
decir, como escribiamos antes, que “cada observa-
ble se representa por un operador autoadjunto”.
En realidad, el operador autoadjunto no repre-
senta el observable, sino una forma concreta de
medir el observable. Ademas, puesto que en TC
suponemos que cualquier operador autoadjunto
corresponde a un observable, deberiamos decir:
“Cada operador autoadjunto representa la medida
ideal de un observable ideal”, ya que en TC cual-
quiera de las versiones de menor resoluciéon de un
observable se puede medir idealmente.

Llegados a este punto, alguien podria poner una
o varias de las siguientes objeciones:

i) Laformamas general de representar las medidas
en mecanica cuantica no es mediante operado-
res autoadjuntos, sino mediante las denomi-
nadas POVM. De hecho, los tratados modernos
hacen énfasis en este punto (véase, p. €j., [19]).

ii) La mayoria de las medidas que se hacen en los
laboratorios no son ideales, y se describen co-
rrectamente mediante POVM.

iii) Las medidas ideales, probablemente, no exis-
ten en la naturaleza.

Pararesponder ai), conviene hablar del segundo
“incidente” al que nos referfamos al principio. En
los afios 1940, Mark A. Naimark (o Neumark, segtin
la transliteracién) (Figura 2) demostro el teorema
que se llama “de dilatacion” [20], que establece que
cualquier POVM se puede implementar mediante
un operador autoadjunto en un espacio de Hilbert
de dimensidon superior. Esto implica que, si acepta-
mos la mecanica cudntica, en ausencia de reglas de
superseleccidn, todas las medidas no ideales que
se hacen en los laboratorios podrian, en principio,
hacerse de manera ideal. Dicho de otra manera, la
mecanica cuantica no predice nada que no pueda,

Figura 1. (a) Para
cualquier estado ini-
cial, una medida ideal
de un observable da
el mismo resultado
cuando se repite. (b)
Para cualquier estado
inicial, una medida
ideal del observable
no perturba la distri-
bucién de probabili-
dad de los resultados
de cualquier observa-
ble compatible B. Por
tanto, si solamente se
tiene acceso a la dis-
tribucion de probabi-
lidad de B, entonces
no es posible saber si
antes se ha hecho o
no una medida ideal
de A. (¢) Una medida
ideal de un observa-
ble ideal X con tres
posibles resultados, a,
b, ¢, se puede imple-
mentar mediante una
secuencia (en orden
arbitrario) de tres
medidas ideales, cada
una de ellas con dos
posibles resultados.
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en principio, conseguirse usando solamente medi-
das ideales de observables ideales.

Ergo se puede decir que la TC es una teoria de
probabilidades para los resultados de medidas
ideales de observables ideales.

El que la mayoria de las medidas que se hacen
en los laboratorios no sean ideales no quiere decir
que no se puedan hacer medidas ideales de esos
mismos observables. Lo que suele pasar es que esas
medidas ideales son mucho mas dificiles de hacer.

:Son posibles las medidas ideales? Por supues-
to que si. No solo ocurre que todas las magnitudes
de la fisica clasica son observables ideales que no
es dificil medir de forma ideal, sino que, hoy en
dia, tenemos un control extremadamente preciso
de procesos naturales que implementan medidas
ideales de observables ideales no clasicos (véase,
p. €j,, [21]) y sabemos cdmo medir, en principio,
todos los observables ideales concebibles en mu-
chos casos (véase, p. €j., [22]).

Ademas, conviene recordar que el progreso de
la Ciencia se ha sustentado, en muchas ocasiones,
en idealizaciones.

Experimentos de correlaciones

Para distinguir unas teorias de probabilidades de
otras, es importante seleccionar aspectos que sean
experimentalmente verificables y que, ademas, ca-
ractericen por si mismos una buena parte de cada
una de las teorias.

Dado el papel central que tienen en TC las me-
didas ideales de observables ideales, una posible
eleccién es comparar los conjuntos de correlacio-
nes que genera cada teoria para cada escenario
compuesto por medidas ideales de observables
ideales.

En nuestro caso, el concepto de escenario agru-
pa todos los experimentos en los que hay una
fuente que prepara sistemas, un conjunto con un
numero fijo de medidas ideales de observables
ideales, cada uno de ellos con un namero de re-
sultados posibles, y las relaciones de compatibi-
lidad entre ellos. Por ejemplo, un escenario es el
formado por cuatro observables abstractos 4, B,
C, D, cada uno con dos resultados posibles, 0 y 1,
y en los que los siguientes pares son compatibles:
(A, B), (B, C), (C, D), (A, D).

Si consideramos todos los pares (¢, {4, B, C, D}),
donde ¢ es un estado posible en la teorfay {4, B,
C, D} es un conjunto posible en la teoria de cua-
tro observables dicotémicos con las relaciones de
compatibilidad mencionadas antes, generaremos
el conjunto de correlaciones para ese escenario.
Cada uno de los elementos de ese conjunto es una
lista de distribuciones de probabilidad. Hay una
distribucién por cada subconjunto de observables
mutuamente compatibles. En nuestro ejemplo, esa
listaes{p(A=a,B=b|p),p(B=b,C=c|p),p(C=c,
D=d|p),p(A=a,D=d|p)}, cona,b,cde{0,1}.
Recuérdese que, como los observables son ideales
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y compatibles, el orden en el que se hagan las me-
didas ideales es irrelevante.

El conjunto de los conjuntos de correlaciones
que son posibles en cada escenario caracteriza, en
buena medida, la teoria. En la teoria de probabili-
dades de observables ideales en fisica clasica, para
cualquier escenario, el correspondiente conjunto
de correlaciones es la envolvente convexa de un
conjunto finito de puntos que corresponden a los
casos en los que los sistemas fisicos tienen valo-
res predeterminados para todos los observables.
Ademas, cada una de las distribuciones de pro-
babilidades para un subconjunto de observables
compatibles se puede obtener como distribucién
marginal de una unica distribucién de probabi-
lidades. En nuestro ejemplo, de la distribucién
p(A=a,B=b,C=c,D=4d|p).

Para teorias de probabilidad mas generales,
un teorema de Nicolai N. Vorob’ev [23] (véase la
Figura 2) establece que en ciertos escenarios es
posible obtener un conjunto de correlaciones ma-
yor que el cldsico: aquellos en los que el grafo de
compatibilidad sea no cordal. El grafo de compa-
tibilidad de un escenario es aquel en el que cada
observable se representa por un vértice y cada
pareja de observables compatibles esta conecta-
da por una arista. En nuestro ejemplo, el grafo de
compatibilidad es un cuadrado. El que un grafo sea
no cordal quiere decir que contiene, como subgra-
fos inducidos, ciclos de mas de tres vértices (es
decir, cuadrados, pentagonos, hexagonos, etc.). Por
lo tanto, el grafo no cordal mas sencillo es, preci-
samente, el cuadrado.

;Y en cudles de los escenarios cuyo grafo de
compatibilidad es no cordal puede haber, segin
la TC, correlaciones no cldsicas?: En todos [24].

;De donde viene la teoria cuantica?

Para intentar responder a esta pregunta desde

la perspectiva de los conjuntos de correlaciones

(para escenarios con medidas ideales de obser-

vables ideales), la estrategia es clara: Para cada

escenario, construyamos el conjunto de correla-
ciones mayor posible (i. e., permitido por la de-
finicion de medida ideal de un observable ideal

y haciendo hipétesis adicionales “razonables”).

Luego busquemos leyes fisicas que lo parcelen

hasta que, para todos los escenarios, el conjunto

de correlaciones sea exactamente el que permite
la TC. Esas leyes previsiblemente nos diran algo
del origen fisico de la TC.

Consideremos como hipétesis adicional razo-
nable la siguiente:

(I) Es posible generar copias estadisticamente in-
dependientes de cualquier elemento del con-
junto de correlaciones.

Se puede demostrar que, para cada escenario, el
conjunto de correlaciones para medidas ideales de
observables ideales mayor que satisface la hipote-
sis (I) es indistinguible del de la TC [25].
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La demostracion

La demostracion consta de tres pasos. El primero
es un teorema que establece que, si tenemos un
conjunto de eventos generados por medidas idea-
les de observables ideales compatibles y tal que
los eventos son excluyentes dos a dos, entonces
la suma de las probabilidades de los eventos de
ese conjunto no puede ser mayor que 1. Esto es lo
que, a veces, se llama el principio de exclusividad,
pero que aqui no es un principio sino un teorema.
Dos eventos (A =a|¢) y (B = b|¢p) son mutuamente
excluyentes si existe un refinamiento comun de A
y B tal que cada uno de esos eventos corresponde
a un resultado distinto de ese refinamiento.

El segundo paso consiste en dividir las corre-
laciones que produce una teoria no por escena-
rios sino por grafos de exclusividad. En un grafo
de exclusividad los vértices representan eventos
y las parejas de eventos mutuamente excluyentes
estan unidas por una arista. Podemos elegir un
grafo arbitrario, por ejemplo, el pentdgono, y pre-
guntarnos como es el conjunto de asignaciones de
probabilidad que permite la teoria, sea cual sea el
escenario en el que estos eventos (que tienen que
satisfacer las relaciones de exclusividad dadas por
el grafo) han sido generados.

En la teoria de probabilidades de observables
ideales en fisica clasica, para cualquier grafo, el
correspondiente conjunto de correlaciones es la
envolvente convexa de los vectores caracteristicos
de los conjuntos independientes del grafo. De nue-
vo, en TC, es un conjunto que, para grafos no per-
fectos, es mayor ya que es el llamado cuerpo theta
del grafo [26], que curiosamente fue introducido
en los afos 1980 en teoria de grafos, sin referencia
alguna a la mecanica cuantica.

Lo interesante es que se puede demostrar que,
para cualquier grafo, el conjunto de correlaciones
que satisfacen el principio de exclusividad y la hi-
potesis (I) es exactamente el conjunto de correla-
ciones de la TC. Y en este paso ya han aparecido
los espacios de Hilbert y 1a regla de Born que tanta
extrafieza causan.

El ultimo paso consiste en afiadir las condicio-
nes de normalizacion y no perturbacién que son
caracteristicas de cada escenario, junto con el re-
quisito de que la probabilidad de cada evento solo

puede ser funcién del estado y los resultados que
lo definen. Véase [25] para mas detalles.

Conclusion

El resultado enunciado antes (“el conjunto de
correlaciones para medidas ideales de observa-
bles ideales mayor que satisface la hipétesis (I)
es indistinguible del de la TC”) no constituye una
derivacion completa de la TC. Pero esta muy cer-
ca. Quedan por desarrollar detalles y, sobre todo,
responder a la pregunta de por qué el espacio de
Hilbert tiene que ser complejo (y no basta con es-
pacios de Hilbert reales). Hay muy buenas razones
para ello. Por ejemplo, la probable imposibilidad
de construir extensiones de la teoria que sean in-
variantes Lorentz [27, 28] y la demostrada impo-
sibilidad de producir correlaciones en escenarios
con dos fuentes independientes usando solo es-
tados producto [29, 30]. Pero son razones que no
estan relacionadas con el argumento principal que
hemos desarrollado en este articulo.

Para terminar, me gustaria enfrentar al lector al
siguiente dilema: Supongamos que aceptamos que
los observables ideales son elementos esenciales en
Fisica. Supongamos que, efectivamente, la TC fuese
la teoria de probabilidades mas general posible para
medidas ideales de observables ideales. ;Qué nos
estaria diciendo eso sobre el origen fisico de la TC?

Una posible respuesta es el argumento de que,
si esto es asi, cualquier civilizacion cientifica aca-
bara encontrando la TC, con independencia de
coémo sea el universo en el que viva. Y, consecuen-
temente, cualquiera que haga una interpretacion
bayesiana de las probabilidades deberia abrazar
fervorosamente la TC como herramienta, con in-
dependencia de como sea el universo [31].

Pero el caso es que, en nuestro universo, hay siste-
mas fisicos e interacciones sobre ellos que permiten
generar experimentalmente cualquier correlacion
entre medidas ideales permitida por la TC. Esa es
una forma corta de decir que, en nuestro universo,
es posible preparar cualquier estado e implementar
cualquier medida ideal de un observable ideal permi-
tida por la TC (véase, p. €j., [22]). Ante esa evidencia,
lo mas sencillo es concluir que, al menos en lo que se
refiere a esos sistemas fisicos e interacciones, la inica
ley de la naturaleza es que no hay ninguna ley [28].

Figura 2. Tres

personajes clave para

entender la teoria
cuantica. Solo uno de
ellos, Liiders, trabajé
en fisica cuantica,
concretamente en
teoria cuantica de
campos. Naimark
realizé contribucio-
nes importantes en
analisis funcional

y teoria de grupos.
Vorob’ev en teoria
de juegos. Izquier-
da: Gerhart Liiders

(1920-1995). Centro:

Mark Aronovich Nai-
mark (1909-1978).
Derecha: Nicolai
Nikolaevich Vorob’ev
(1925-1995). (No ha
sido posible identifi-
car a los poseedores
de los derechos de
estas fotografias).
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