
Revista Española de Física  •  35-2  •  Abril-junio 2021  1

U
no de los problemas más antiguos de la física mo-
derna es de dónde viene la mecánica cuántica. La 
observación de la importancia que tienen en Física 
las cantidades conservadas y los observables que 

se pueden medir repetidamente sin que su resultado cam-
bie nos lleva a preguntarnos cuál es la teoría de probabili-
dades más general posible para los eventos producidos por 
medidas de observables de este tipo. Aquí introducimos las 
definiciones y herramientas para demostrar que, sorpren-
dentemente, esa teoría más general posible es la teoría cuán-
tica de probabilidades.

Introducción 
En 1964, Richard Feynman pronunció una frase que sigue 
causando revuelo: “Creo que puedo decir con seguridad que 
nadie entiende la mecánica cuántica” [1]. Se refería a que na-
die es capaz de derivar la mecánica cuántica a partir de unos 
principios físicos básicos, tal y como sí se puede hacer con, por 
ejemplo, la teoría de la relatividad especial [2]. La situación 
ha cambiado bastante en los últimos 20 años.

Un primer paso ha sido darse cuenta de que la mecánica 
cuántica está formada por dos capas distintas. La primera 
capa es una teoría abstracta de probabilidades que puede 
estudiarse y que debería enseñarse [3, 4] independiente-
mente de sus aplicaciones en Física. Esta capa fundamental 
es un conjunto de reglas para predecir las distribuciones de 
probabilidad de los resultados de una serie de posibles me-
didas futuras sobre (copias similarmente preparadas de) un 
sistema físico. La teoría no habla de propiedades del sistema 
físico, sino de las distribuciones de probabilidad de observa-
bles que podrían medirse haciendo interaccionar el sistema 
físico con otros dispositivos. El espacio muestral de esta teo-
ría está formado por sucesos elementales del tipo: “al medir 
el observable A sobre un sistema preparado en el estado φ el 
resultado es a”, que denotaremos por (A = a|φ).

Lo raro de esta teoría es cómo se representan matemáti-
camente en ella los estados, observables y sucesos, y cómo 
se usan estas representaciones para calcular probabilidades. 
En su formulación más sencilla, las tres reglas en las que se 
basa la teoría son (véase, p. ej., [5]):

1.	 Cada “estado cuántico” de máxima información de un “sis-
tema cuántico”1 se representa por un rayo en un espacio 
de Hilbert complejo (vectores proporcionales representan 
el mismo estado). En ausencia de reglas de superselec-
ción, cualquier rayo representa un estado. Cada simetría 
del espacio de estados cuánticos se representa por una 
transformación unitaria o antiunitaria.

2.	 Cada observable se representa por un operador autoad-
junto. Los únicos resultados posibles al medir un obser-
vable son los autovalores del operador que lo representa 
(recuérdese que los autovalores de un operador autoad-
junto son números reales). En ausencia de reglas de su-
perselección, cualquier operador autoadjunto representa 
un observable.

3.	 Regla de Born. Si el estado es el representado por |φ⟩ y se 
hace una medida del observable maximal A (representado 
por un operador autoadjunto de espectro no degenerado), la 
probabilidad de que el resultado sea el asociado al autovalor 
a es p(A = a|φ) = |⟨A = a|φ⟩|2, donde ⟨A = a| es el transpuesto 
del complejo conjugado de |A = a⟩, que es al autovector del 
operador asociado a A correspondiente al resultado/auto-
valor a (recuérdese que los autovectores de un operador 
autoadjunto son ortogonales entre sí).
Esta teoría de probabilidades es a lo que, de aquí en ade-

lante, llamaremos teoría cuántica (TC) (como, p. ej., [7, 8]). 
La segunda capa de la mecánica cuántica está formada por 

las herramientas que se usan para adaptar la TC a problemas 
de mecánica y electromagnetismo. En esta capa están, por 
ejemplo, las reglas de cuantización, las simetrías y cantida-

1  La definición de un “sistema cuántico” requiere tanto un sistema físico 
como un dispositivo de medida. El “estado cuántico” que se asocia a un 
sistema físico es relativo al dispositivo de medida con el que podría inte-
ractuar el sistema físico en el futuro. Por ejemplo, un fotón individual es un 
sistema físico, pero todavía no es un sistema cuántico. Si se hiciese pasar el 
fotón por una matriz de divisores de haz con d salidas con un detector de 
fotones en cada una de ellas, como se describe en [6], entonces el conjunto 
fotón-dispositivo definiría un sistema cuántico de dimensión d o qudit. 
Nótese que el que el sistema cuántico sea un qubit (d = 2) o un qudit de 
dimensión superior no es una propiedad intrínseca del fotón, sino que 
depende del dispositivo que se use. 
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des conservadas, los hamiltonianos, la ecuación 
de Schrödinger, y las reglas de superselección. En 
este artículo nos concentraremos en la primera 
capa, en la creencia de que es ahí donde reside la 
rareza de la mecánica cuántica. 

Para los que nunca han oído hablar de la me-
cánica cuántica, toparse con ella por primera vez 
produce enorme extrañeza. ¿De dónde salen esa 
representación matemática y esas reglas para 
calcular probabilidades? La mayoría de los que la 
usan y la enseñan se han acostumbrado a que la 
teoría siempre dé respuestas correctas. Quizá por 
eso, ni cuestionan su validez ni se hacen la pregun-
ta que corroía a John Wheeler: “¿De dónde viene 
la mecánica cuántica?” [9]. Si no contestamos esa 
pregunta, seguirá siendo cierto que usamos y en-
señamos la mecánica cuántica sin entenderla.

Pero, si es cierto que la rareza de la mecánica 
cuántica reside en la primera capa, o sea, la TC, ¿es 
posible derivar la TC a partir de principios físicos? 

Desde 2001, existen varias derivaciones o “re-
construcciones” de la TC a partir de axiomas más 
o menos sencillos, p. ej., [7, 8, 10, 11]. Típicamente 
se critican estas derivaciones diciendo que no se 
basan en principios físicos [12], que incluyen axio-
mas dudosos [13], y que no han ayudado a enten-
der de dónde viene la TC, ni resuelven el problema 
de la interpretación de la mecánica cuántica [14]. 
Sin embargo, el marco en el que se han realizado 
estas derivaciones sí que nos ha enseñado muchas 
cosas interesantes. 

La idea común en todos estos trabajos es con-
siderar que la TC es una teoría de probabilida-
des que forma parte de un universo mucho más 
grande de posibles teorías de probabilidades. 
Lo que hacen estas derivaciones es ir parcelan-
do ese universo mediante axiomas, hasta que la 
única superviviente es la TC. Sin embargo, en ese 
mismo marco, otros trabajos han seguido una es-
trategia muy interesante: preguntarse qué signi-
fican operacionalmente determinadas reglas de 
la TC cuando se analizan sin saber nada de la TC 
(p. ej., [15, 16]). 

En este artículo vamos a hablar precisamente 
de un resultado que nace de adoptar esta perspec-
tiva. Dejaremos de lado las matemáticas de la TC 
y nos preguntaremos qué ve una persona en un 
universo que se rige por esas matemáticas. 

Observables compatibles y medidas ideales
Si medimos el número de extremidades de un ser 
humano, probablemente obtendremos “cuatro” 
como resultado. Y este resultado no cambia si 
repetimos la medida. No cambia incluso cuando, 
entre la primera y la segunda medida, medimos el 
número de ojos del ser humano. Podemos, inclu-
so, medir a la vez ambos observables (el número 
de extremidades y el número de ojos) sin que la 
medida de uno de ellos afecte al resultado de la 
medida del otro. 

Un observable se puede medir de formas dis-
tintas. Por eso hay que distinguir entre el obser-
vable y su medida. El observable agrupa a todas 
las medidas que producen la misma distribución 
de probabilidad para cada estado inicial. Lo que 
pase con el sistema físico después de que se haya 
generado el resultado es otro cantar.

La Ciencia parece tener un particular interés 
por las cosas que no cambian. Y, en el caso de las 
medidas, por aquellas que arrojan resultados per-
sistentes y que permiten seguir haciendo medidas 
que, a su vez, arrojan resultados persistentes.

Este interés es el que lleva a la siguiente defi-
nición:

Dos observables, A y B, son compatibles si existe 
un observable C tal que, para todo estado φ, para 
cada resultado a su probabilidad cumpla p(A  = 
a|φ) = ∑ca 

p(C = ca|φ), y para cada resultado b su 
probabilidad cumpla p(B = b|φ) = ∑cb 

p(C = cb|φ). 
Si no existe C, entonces se dice que los observables 
A y B son incompatibles.

Si A y B son observables compatibles, se dice 
que cada uno de ellos es una versión de menor reso-
lución del observable C definido antes. Y entonces 
C se dice que es un refinamiento de A (y de B). 
Dicho de otro modo, dos observables son compa-
tibles cuando tienen un refinamiento común.

Se dice que una medida de un observable per-
turba a otro observable cuando la primera cambia 
la distribución de probabilidad del segundo. La de-
finición de incompatibilidad implica que cualquier 
medida de un observable perturba los observa-
bles que son incompatibles con él. Pero el que dos 
observables sean compatibles no garantiza que 
cualquier medida de uno de ellos no perturbe al 
otro. Por ello es importante identificar qué obser-
vables compatibles se pueden medir uno tras otro 
sin que la medida (menos perturbativa posible) de 
cada uno de ellos perturbe (sea cual sea el esta-
do inicial) a los otros, con lo que el orden en que 
se midan los observables compatibles se volvería 
irrelevante.

Esto nos lleva a dos conceptos clave. El primero, 
es el de medida ideal de un observable. 

Una medida ideal de un observable es aquella 
que no perturba ningún observable compatible. 

Detengámonos a examinar algunas consecuen-
cias de esta definición:
1.	 Una medida ideal de un observable arroja el 

mismo resultado al repetirla sobre el mismo 
sistema físico. Véase la Figura 1 (a).

2.	 Una medida ideal de un observable no perturba 
las distribuciones de probabilidad de medidas 
posteriores de observables compatibles. Véase 
la Figura 1 (b).

3.	 En particular, una medida ideal de A no pertur-
ba una medida posterior de cualquier refina-
miento de A.
El segundo concepto clave es el de observable 

ideal.
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Un observable ideal es aquel que cumple que 
tanto él como sus versiones de menor resolución 
se pueden medir idealmente. 

Una consecuencia de esta definición es que:
4.	 Un observable ideal X con d posibles resultados, 

a, b, …, c, siempre se puede medir mediante una 
secuencia de d medidas ideales: una de ellas co-
rrespondiente a la versión de menor resolución 
de X con resultados a y ā (“no a”), otra corres-
pondiente a la versión de menor resolución de 
X con resultados b y b–,…., y otra correspondien-
te a la versión de menor resolución de X con 
resultados c y c–. Véase la Figura 1 (c). El orden 
en el que se miden idealmente las versiones de 
menor resolución es irrelevante.
Todas las magnitudes de la física clásica son 

observables ideales.

La teoría de probabilidades para observables 
ideales 
Sin embargo, en principio, la mecánica cuántica 
es algo completamente distinto de la física clási-
ca. ¿Por qué entonces defendemos la tesis de que, 
para entender la TC, hay que fijarse en los obser-
vables ideales?

Déjenme adelantarles la respuesta: porque la 
TC es una teoría de probabilidades para los resul-
tados de medidas ideales de observables ideales.

Para demostrar esto, que espero sea una afir-
mación en la que muchos discrepen, vamos a 
recordar dos “incidentes”, no muy conocidos y 
ambos relativamente recientes, en la historia de 
la mecánica cuántica.

En 1932, John von Neumann publicó la que se 
considera la biblia de la teoría de la medición en me-
cánica cuántica [17]. Es ahí donde queda claramente 
formulada la correspondencia entre probabilidades 
de eventos y espacios de Hilbert complejos. Curio-
samente, no es hasta 1951 que alguien, Gerhart Lü-
ders [18] (Figura 2), se da cuenta de que algo muy 
importante está mal en el libro de von Neumann: la 
prescripción de cuál es el estado cuántico tras una 
medida representada por un operador autoadjunto 
es inconsistente con la regla de Born. Lüders corrige 
este error y proporciona la fórmula que, desde en-
tonces, se considera la correcta2.

¿Y por qué es tan importante la corrección de 
Lüders? Porque la transformación del estado que 

2   Por ejemplo, según la regla de Lüders, si el estado inicial es 

el descrito por 1—3
⎧
⎩

⎧
⎩

1
1
1

 y medimos el observable representado 

por el proyector sobre⎧
⎩

⎧
⎩

1
0
0

 y obtenemos el resultado asociado 

al autovalor 1, entonces el estado después de la medida es el 

descrito por ⎧
⎩

⎧
⎩

1
0
0

. Pero si el resultado es el asociado al autova-

lor 0, entonces el estado después de la medida es el descrito 

por 1—2
⎧
⎩

⎧
⎩

0
1
1

. En ambos casos el estado tras la medida es de máxi-

ma información. Sin embargo, según von Neumann, en el se-

gundo caso el estado tras la medida sería un estado mezcla.

propone Lüders corresponde al único proceso 
que puede asociarse a una medición de un obser-
vable A que no perturba una medición posterior 
de cualquier refinamiento de A. Es decir, la trans-
formación de Lüders es la que corresponde a una 
medida ideal del observable A [15, 16]. 

Esto implica que no es suficientemente preciso 
decir, como escribíamos antes, que “cada observa-
ble se representa por un operador autoadjunto”. 
En realidad, el operador autoadjunto no repre-
senta el observable, sino una forma concreta de 
medir el observable. Además, puesto que en TC 
suponemos que cualquier operador autoadjunto 
corresponde a un observable, deberíamos decir: 
“Cada operador autoadjunto representa la medida 
ideal de un observable ideal”, ya que en TC cual-
quiera de las versiones de menor resolución de un 
observable se puede medir idealmente.

Llegados a este punto, alguien podría poner una 
o varias de las siguientes objeciones: 
i)	 La forma más general de representar las medidas 

en mecánica cuántica no es mediante operado-
res autoadjuntos, sino mediante las denomi-
nadas POVM. De hecho, los tratados modernos 
hacen énfasis en este punto (véase, p. ej., [19]). 

ii)	La mayoría de las medidas que se hacen en los 
laboratorios no son ideales, y se describen co-
rrectamente mediante POVM. 

iii)	Las medidas ideales, probablemente, no exis-
ten en la naturaleza.

Para responder a i), conviene hablar del segundo 
“incidente” al que nos referíamos al principio. En 
los años 1940, Mark A. Naimark (o Neumark, según 
la transliteración) (Figura 2) demostró el teorema 
que se llama “de dilatación” [20], que establece que 
cualquier POVM se puede implementar mediante 
un operador autoadjunto en un espacio de Hilbert 
de dimensión superior. Esto implica que, si acepta-
mos la mecánica cuántica, en ausencia de reglas de 
superselección, todas las medidas no ideales que 
se hacen en los laboratorios podrían, en principio, 
hacerse de manera ideal. Dicho de otra manera, la 
mecánica cuántica no predice nada que no pueda, 

Figura 1. (a) Para 
cualquier estado ini-
cial, una medida ideal 
de un observable da 
el mismo resultado 
cuando se repite. (b) 
Para cualquier estado 
inicial, una medida 
ideal del observable 
no perturba la distri-
bución de probabili-
dad de los resultados 
de cualquier observa-
ble compatible B. Por 
tanto, si solamente se 
tiene acceso a la dis-
tribución de probabi-
lidad de B, entonces 
no es posible saber si 
antes se ha hecho o 
no una medida ideal 
de A. (c) Una medida 
ideal de un observa-
ble ideal X con tres 
posibles resultados, a, 
b, c, se puede imple-
mentar mediante una 
secuencia (en orden 
arbitrario) de tres 
medidas ideales, cada 
una de ellas con dos 
posibles resultados.
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en principio, conseguirse usando solamente medi-
das ideales de observables ideales.

Ergo se puede decir que la TC es una teoría de 
probabilidades para los resultados de medidas 
ideales de observables ideales.

El que la mayoría de las medidas que se hacen 
en los laboratorios no sean ideales no quiere decir 
que no se puedan hacer medidas ideales de esos 
mismos observables. Lo que suele pasar es que esas 
medidas ideales son mucho más difíciles de hacer.

¿Son posibles las medidas ideales? Por supues-
to que sí. No solo ocurre que todas las magnitudes 
de la física clásica son observables ideales que no 
es difícil medir de forma ideal, sino que, hoy en 
día, tenemos un control extremadamente preciso 
de procesos naturales que implementan medidas 
ideales de observables ideales no clásicos (véase, 
p. ej., [21]) y sabemos cómo medir, en principio, 
todos los observables ideales concebibles en mu-
chos casos (véase, p. ej., [22]). 

Además, conviene recordar que el progreso de 
la Ciencia se ha sustentado, en muchas ocasiones, 
en idealizaciones.

Experimentos de correlaciones
Para distinguir unas teorías de probabilidades de 
otras, es importante seleccionar aspectos que sean 
experimentalmente verificables y que, además, ca-
ractericen por sí mismos una buena parte de cada 
una de las teorías.

Dado el papel central que tienen en TC las me-
didas ideales de observables ideales, una posible 
elección es comparar los conjuntos de correlacio-
nes que genera cada teoría para cada escenario 
compuesto por medidas ideales de observables 
ideales.

En nuestro caso, el concepto de escenario agru-
pa todos los experimentos en los que hay una 
fuente que prepara sistemas, un conjunto con un 
número fijo de medidas ideales de observables 
ideales, cada uno de ellos con un número de re-
sultados posibles, y las relaciones de compatibi-
lidad entre ellos. Por ejemplo, un escenario es el 
formado por cuatro observables abstractos A, B, 
C, D, cada uno con dos resultados posibles, 0 y 1, 
y en los que los siguientes pares son compatibles: 
(A, B), (B, C), (C, D), (A, D). 

Si consideramos todos los pares (φ, {A, B, C, D}), 
donde φ es un estado posible en la teoría y {A, B, 
C, D} es un conjunto posible en la teoría de cua-
tro observables dicotómicos con las relaciones de 
compatibilidad mencionadas antes, generaremos 
el conjunto de correlaciones para ese escenario. 
Cada uno de los elementos de ese conjunto es una 
lista de distribuciones de probabilidad. Hay una 
distribución por cada subconjunto de observables 
mutuamente compatibles. En nuestro ejemplo, esa 
lista es {p(A = a, B = b |φ), p(B = b, C = c |φ), p(C = c,  
D = d |φ), p(A = a, D = d |φ)}, con a, b, c, d ∈ {0,1}. 
Recuérdese que, como los observables son ideales 

y compatibles, el orden en el que se hagan las me-
didas ideales es irrelevante. 

El conjunto de los conjuntos de correlaciones 
que son posibles en cada escenario caracteriza, en 
buena medida, la teoría. En la teoría de probabili-
dades de observables ideales en física clásica, para 
cualquier escenario, el correspondiente conjunto 
de correlaciones es la envolvente convexa de un 
conjunto finito de puntos que corresponden a los 
casos en los que los sistemas físicos tienen valo-
res predeterminados para todos los observables. 
Además, cada una de las distribuciones de pro-
babilidades para un subconjunto de observables 
compatibles se puede obtener como distribución 
marginal de una única distribución de probabi-
lidades. En nuestro ejemplo, de la distribución 
p(A = a, B = b, C = c, D = d |φ).

Para teorías de probabilidad más generales, 
un teorema de Nicolai N. Vorob’ev [23] (véase la 
Figura 2) establece que en ciertos escenarios es 
posible obtener un conjunto de correlaciones ma-
yor que el clásico: aquellos en los que el grafo de 
compatibilidad sea no cordal. El grafo de compa-
tibilidad de un escenario es aquel en el que cada 
observable se representa por un vértice y cada 
pareja de observables compatibles está conecta-
da por una arista. En nuestro ejemplo, el grafo de 
compatibilidad es un cuadrado. El que un grafo sea 
no cordal quiere decir que contiene, como subgra-
fos inducidos, ciclos de más de tres vértices (es 
decir, cuadrados, pentágonos, hexágonos, etc.). Por 
lo tanto, el grafo no cordal más sencillo es, preci-
samente, el cuadrado.

¿Y en cuáles de los escenarios cuyo grafo de 
compatibilidad es no cordal puede haber, según 
la TC, correlaciones no clásicas?: En todos [24].

¿De dónde viene la teoría cuántica?
Para intentar responder a esta pregunta desde 
la perspectiva de los conjuntos de correlaciones 
(para escenarios con medidas ideales de obser-
vables ideales), la estrategia es clara: Para cada 
escenario, construyamos el conjunto de correla-
ciones mayor posible (i. e., permitido por la de-
finición de medida ideal de un observable ideal 
y haciendo hipótesis adicionales “razonables”). 
Luego busquemos leyes físicas que lo parcelen 
hasta que, para todos los escenarios, el conjunto 
de correlaciones sea exactamente el que permite 
la TC. Esas leyes previsiblemente nos dirán algo 
del origen físico de la TC.

Consideremos como hipótesis adicional razo-
nable la siguiente:
(I) �Es posible generar copias estadísticamente in-

dependientes de cualquier elemento del con-
junto de correlaciones.
Se puede demostrar que, para cada escenario, el 

conjunto de correlaciones para medidas ideales de 
observables ideales mayor que satisface la hipóte-
sis (I) es indistinguible del de la TC [25].
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La demostración
La demostración consta de tres pasos. El primero 
es un teorema que establece que, si tenemos un 
conjunto de eventos generados por medidas idea-
les de observables ideales compatibles y tal que 
los eventos son excluyentes dos a dos, entonces 
la suma de las probabilidades de los eventos de 
ese conjunto no puede ser mayor que 1. Esto es lo 
que, a veces, se llama el principio de exclusividad, 
pero que aquí no es un principio sino un teorema. 
Dos eventos (A = a|φ) y (B = b|φ) son mutuamente 
excluyentes si existe un refinamiento común de A 
y B tal que cada uno de esos eventos corresponde 
a un resultado distinto de ese refinamiento.

El segundo paso consiste en dividir las corre-
laciones que produce una teoría no por escena-
rios sino por grafos de exclusividad. En un grafo 
de exclusividad los vértices representan eventos 
y las parejas de eventos mutuamente excluyentes 
están unidas por una arista. Podemos elegir un 
grafo arbitrario, por ejemplo, el pentágono, y pre-
guntarnos cómo es el conjunto de asignaciones de 
probabilidad que permite la teoría, sea cual sea el 
escenario en el que estos eventos (que tienen que 
satisfacer las relaciones de exclusividad dadas por 
el grafo) han sido generados. 

En la teoría de probabilidades de observables 
ideales en física clásica, para cualquier grafo, el 
correspondiente conjunto de correlaciones es la 
envolvente convexa de los vectores característicos 
de los conjuntos independientes del grafo. De nue-
vo, en TC, es un conjunto que, para grafos no per-
fectos, es mayor ya que es el llamado cuerpo theta 
del grafo [26], que curiosamente fue introducido 
en los años 1980 en teoría de grafos, sin referencia 
alguna a la mecánica cuántica.

Lo interesante es que se puede demostrar que, 
para cualquier grafo, el conjunto de correlaciones 
que satisfacen el principio de exclusividad y la hi-
pótesis (I) es exactamente el conjunto de correla-
ciones de la TC. Y en este paso ya han aparecido 
los espacios de Hilbert y la regla de Born que tanta 
extrañeza causan.

El último paso consiste en añadir las condicio-
nes de normalización y no perturbación que son 
características de cada escenario, junto con el re-
quisito de que la probabilidad de cada evento solo 

puede ser función del estado y los resultados que 
lo definen. Véase [25] para más detalles.

Conclusión
El resultado enunciado antes (“el conjunto de 
correlaciones para medidas ideales de observa-
bles ideales mayor que satisface la hipótesis (I) 
es indistinguible del de la TC”) no constituye una 
derivación completa de la TC. Pero está muy cer-
ca. Quedan por desarrollar detalles y, sobre todo, 
responder a la pregunta de por qué el espacio de 
Hilbert tiene que ser complejo (y no basta con es-
pacios de Hilbert reales). Hay muy buenas razones 
para ello. Por ejemplo, la probable imposibilidad 
de construir extensiones de la teoría que sean in-
variantes Lorentz [27, 28] y la demostrada impo-
sibilidad de producir correlaciones en escenarios 
con dos fuentes independientes usando solo es-
tados producto [29, 30]. Pero son razones que no 
están relacionadas con el argumento principal que 
hemos desarrollado en este artículo. 

Para terminar, me gustaría enfrentar al lector al 
siguiente dilema: Supongamos que aceptamos que 
los observables ideales son elementos esenciales en 
Física. Supongamos que, efectivamente, la TC fuese 
la teoría de probabilidades más general posible para 
medidas ideales de observables ideales. ¿Qué nos 
estaría diciendo eso sobre el origen físico de la TC? 

Una posible respuesta es el argumento de que, 
si esto es así, cualquier civilización científica aca-
bará encontrando la TC, con independencia de 
cómo sea el universo en el que viva. Y, consecuen-
temente, cualquiera que haga una interpretación 
bayesiana de las probabilidades debería abrazar 
fervorosamente la TC como herramienta, con in-
dependencia de cómo sea el universo [31]. 

Pero el caso es que, en nuestro universo, hay siste-
mas físicos e interacciones sobre ellos que permiten 
generar experimentalmente cualquier correlación 
entre medidas ideales permitida por la TC. Esa es 
una forma corta de decir que, en nuestro universo, 
es posible preparar cualquier estado e implementar 
cualquier medida ideal de un observable ideal permi-
tida por la TC (véase, p. ej., [22]). Ante esa evidencia, 
lo más sencillo es concluir que, al menos en lo que se 
refiere a esos sistemas físicos e interacciones, la única 
ley de la naturaleza es que no hay ninguna ley [28].

Figura 2. Tres 
personajes clave para 
entender la teoría 
cuántica. Solo uno de 
ellos, Lüders, trabajó 
en física cuántica, 
concretamente en 
teoría cuántica de 
campos. Naimark 
realizó contribucio-
nes importantes en 
análisis funcional 
y teoría de grupos. 
Vorob’ev en teoría 
de juegos. Izquier-
da: Gerhart Lüders 
(1920-1995). Centro: 
Mark Aronovich Nai-
mark (1909-1978). 
Derecha: Nicolai 
Nikolaevich Vorob’ev 
(1925-1995). (No ha 
sido posible identifi-
car a los poseedores 
de los derechos de 
estas fotografías).
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