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El Premio Nobel de Física del año 2024 marca un hito 
fundamental en la historia de la ciencia, ya que, por 
primera vez, se otorgó a avances en redes neuronales, 
disciplina que impulsa el aprendizaje automático 
y la inteligencia artificial en la actualidad. Este 
reconocimiento pone de manifiesto el profundo impacto 
de este campo, destacando su papel esencial en la 
transformación tanto de los marcos teóricos como de las 
aplicaciones prácticas en la ciencia contemporánea.

Reconocimiento a las redes neuronales
John J. Hopfield y Geoffrey Hinton recibieron el premio No-
bel de Física por sus contribuciones al desarrollo de las re-
des neuronales artificiales. El modelo de memoria asociativa 
propuesto por Hopfield [1] reveló que el almacenamiento y 
la recuperación de información en redes neuronales pue-
den surgir como propiedades emergentes de su dinámica. El 
modelo se inspiró en conceptos de sistemas magnéticos, es-
tableciendo una analogía entre el aprendizaje en redes neu-
ronales y la dinámica colectiva de espines interactuantes. 
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Fig. 1. (a) Red de Hopfield. Si indica el estado de la neurona i-ésima a un tiempo fijo de la dinámica de la red. Jij es el acoplamiento simétrico entre las unidades 
i y j, que se construye en términos de las P memorias almacenadas en la red. (b) Memoria asociativa en una red de Hopfield. En la parte superior, el paisaje 
de energía, donde se almacenan tres patrones, por ejemplo, representaciones de la letra A y otras dos letras, utilizando círculos y espacios en blanco. En la 
parte inferior: a la derecha, la representación del patrón A; a la izquierda, una versión ruidosa del mismo con un 10 % de ruido. La red, al ser inicializada 
con una versión alterada del patrón, evoluciona hasta recuperar completamente el patrón memorizado A, corrigiendo así los errores. La red posee estados 
de mayor energía. La zona en gris indica la cuenca de atracción del patrón A.
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Esta relación resalta el vínculo profundo entre la 
física estadística y la neurociencia computacio-
nal. Por otro lado, la máquina de Boltzmann, de-
sarrollada por Hinton y colaboradores [2], aplica 
principios probabilísticos de la física estadística 
para habilitar el aprendizaje en redes neuronales. 
Este enfoque supuso un avance crucial para el 
aprendizaje automático, facilitando la detección 
de patrones en datos mediante aprendizaje no 
supervisado. Los trabajos de Hopfield y Hinton 
unieron conceptos de la mecánica estadística con 
la neurociencia computacional y el aprendizaje 
automático, proporcionando un marco teórico 
que influiría profundamente en estas disciplinas 
y en muchas otras áreas de la ciencia y de la tec-
nología. 

Hopfield y la memoria asociativa
En su trabajo de 1982, Hopfield propuso un mo-
delo de red neuronal recurrente compuesto por 
simples neuronas binarias [1], con una dinámica 
gobernada por un principio de minimización de 
energía (figura 1a; véase el recuadro Modelo de 
Hopfield). Su gran contribución radicó en mos-
trar que estas redes podían almacenar múltiples 
patrones de memoria. 

Bajo determinadas condiciones, los patrones 
almacenados actúan como atractores de la diná-
mica del modelo, es decir, como puntos fijos es-
tables. El estado inicial de la red determina hacia 
qué atractor converge su evolución. Cada atractor 
posee una cuenca de atracción, definida como el 
conjunto de estados iniciales que conducen a di-
cho patrón (figura 1b). Debido a que un patrón 
almacenado puede ser recuperado a partir de una 
versión incompleta o ruidosa del mismo, se dice 
que la memoria es de tipo autoasociativa.

La solución de la termodinámica del modelo 
de Hopfield [3] permitió establecer las condicio-
nes bajo las cuales los patrones almacenados son 
atractores estables de la dinámica del sistema, en 
función de la temperatura T = 1/β y del parámetro 
de carga α = P/N, donde N es el número de neu-
ronas y P es el número de patrones almacenados. 
Para valores bajos de la temperatura T y una carga 
α pequeña, los patrones almacenados {ξμi } (μ = 1, 
. . . , P) son atractores estables (véase el recuadro 
Modelo de Hopfield). En esta fase, la actividad de 
las neuronas se alinea con un patrón μ. Su valor 
medio ⟨Si⟩ cumple

1—N ∑
i

 ⟨Si⟩ ξμi  = M,   1—N ∑
i

 ⟨Si⟩ ξνi  = 0 (ν ≠ μ),

donde M depende de α y β. Existen dos estados 
de recuperación, uno con M > 0 y otro con M < 0. 
En esta situación, la red neuronal puede recupe-
rar de manera confiable un patrón almacenado 
incluso a partir de una versión parcial o ruidosa, 
gracias a la presencia de una cuenca de atracción 
suficientemente amplia alrededor de cada patrón. 

Modelo de Hopfield

El modelo de Hopfield [1] es una red neuronal recu-
rrente que almacena P patrones de actividad ξμi , con 
i = 1, . . . , N representando las N neuronas de la red, y 
μ = 1, . . . , P indicando los distintos patrones. Cada com-
ponente espacial ξμi  es una variable binaria que toma los 
valores ξμi  . El estado de actividad de la neurona 
i en el tiempo t se denota como Si(t), con Si(t)  .  
La actualización del estado de cada neurona sigue la 
siguiente regla

Si(t + 1) = sgn ∑
N

j=1
 JijSj(t)  ,

donde Jij son las conexiones sinápticas entre las neu-
ronas i y j, y sgn(x) toma los valores 1 si x > 0 y –1 si 
x < 0. Los patrones de actividad ξμi se almacenan en la 
red mediante una regla hebbiana para las sinapsis (se 
asume Jij = 0 para evitar autoconexiones)

Jij = 1—N  ∑
P

μ=1
 ξμi ξ

μ
j .

Para demostrar que en el límite N → ∞ los patrones 
de actividad ξμi son atractores de la dinámica, suponga-
mos que el estado inicial Si(0) está cerca de uno de los 
patrones, ξνi . Entonces Si(t + 1) es

Si(t + 1) = sgn ∑
N

j=1
 ∑

P

μ=1
 ξμi ξ

μ
j Sj(t)  .

En el tiempo, t Si(t) ≈ ξνi . La expresión entre los pa-
réntesis se puede descomponer

ξνi—N ∑
N

j=1
 ξνi Sj(t) + ∑

μ≠ν

ξμi—N ∑
N

j=1
 ξμj Sj(t) .

El primer término corresponde al patrón correcto 
μ = ν, mientras que el segundo representa interferencia 
de los otros patrones. Consideremos el límite de N → ∞. 
En este límite, la interferencia de los patrones μ ≠ ν tien-
de a cero, ya que los patrones ξμi  son independientes y 
no correlacionados entre sí. Por lo tanto, en el límite de 
N → ∞ la dinámica del modelo de Hopfield hace que el 
estado de la red converja al patrón ξνi , lo que demues-
tra que los patrones almacenados son atractores de la 
dinámica.

La dinámica del modelo de Hopfield puede inter-
pretarse como la evolución a temperatura cero de un 
sistema de física estadística. En este contexto, el siste-
ma minimiza una función de energía (o hamiltoniano) 
definida como:

E = – 1—2 ∑
i,j

 JijSiSj .

La actualización de cada neurona corresponde a un 
proceso de descenso de energía, ya que la regla de ac-
tualización Si(t + 1) = sgn (∑j JijSj(t)) reduce el valor de E 
en cada paso de la dinámica. Los atractores correspon-
den a los mínimos locales de E, que son precisamente 
los patrones almacenados ξμi (figura 1b).
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Esta fase es conocida como la fase de recuperación 
(figura 2).

Los estados de recuperación emergen de forma 
metastable por debajo de TM(α) y se convierten en 
mínimos globales estables por debajo de Tc(α), lo 
que marca una transición de primer orden. En esta 
región intermedia entre Tc(α) y TM(α) aparecen es-
tados que son configuraciones de la red que no co-
rresponden exactamente a patrones almacenados, 
pero que tienen una energía relativamente baja y 
pueden atrapar transitoriamente la dinámica de 
la red. Estos estados están relacionados con con-
figuraciones cercanas a los patrones almacenados, 
pero no son globalmente estables.  A valores altos 
de α o T, entre TM(α) y Tg(α), el sistema entra en 
la fase de vidrio de espín (figura 2). En esta fase, 
los estados de la red no están correlacionados 
con los patrones almacenados. Los estados de vi-
drio de espín son configuraciones de energía baja 
pero desordenadas, donde las neuronas presentan 
una polarización espontánea que no refleja ningu-
na estructura de los patrones almacenados. Este 
comportamiento es caracterizado por un paráme-
tro de orden α, que mide la magnitud del desor-
den interno en la red, y no hay alineamiento con 
ningún patrón [4]

q = 1—N ∑
i

 ⟨Si⟩2
 > 0,  1—N ∑

i
 ⟨Si⟩ ξμi  = 0 ∀μ .

Finalmente, para temperaturas altas, T > Tg(α), 
el sistema se encuentra en una fase paramagnéti-
ca, donde las neuronas no presentan polarización 
espontánea, es decir, ⟨Si⟩ = 0 (figura 2). El diagra-
ma de fases refleja la naturaleza rica y compleja 
del modelo de Hopfield, que combina propiedades 
emergentes propias de sistemas físicos con capa-
cidades computacionales relacionadas con el al-
macenamiento y recuperación de información [5].

Tras la aparición del artículo de Hopfield, pu-
blicado en la sección de biofísica de la revista 
PNAS [1], las reacciones se extendieron en varias 
áreas de la ciencia. En neurociencia, el trabajo de  
Hopfield surgió en un momento de cambio de pa-
radigma. La tradicional {doctrina de una neurona, 
que había dominado desde los estudios de Ramón 
y Cajal [6], se basaba en la idea de que las capa-
cidades cognitivas del cerebro eran atribuibles a 
neuronas individuales. Sin embargo, una nueva 
perspectiva comenzaba a extenderse: la doctrina 
de los circuitos cerebrales, según la cual las pro-
piedades cognitivas del cerebro no dependen de 
neuronas aisladas, sino de las interacciones den-
tro de poblaciones neuronales [7]. El modelo de 
Hopfield representó un avance crucial hacia esta 
visión, al demostrar que una red neuronal podía 
recuperar información almacenada en las conexio-
nes sinápticas entre neuronas, proporcionando un 
modelo matemático robusto de la memoria aso-
ciativa. Por otra parte, la presencia de atractores 
se utilizó para proponer modelos en los que la in-

formación podría mantenerse en memoria en la 
forma de actividad neuronal persistente durante 
tiempos del orden de segundos. Aunque este no 
es el único mecanismo cerebral que podría dar 
lugar a la memoria de corto plazo, esta propuesta 
ha recibido una enorme atención tanto conceptual 
como experimentalmente [8].  

En inteligencia artificial contribuyó a focalizar 
la atención en redes neuronales artificiales con ar-
quitectura recurrente, en la que todas las unidades 
que componen la red pueden conectarse entre sí. 
También motivó un enfoque de la inteligencia ar-
tificial basado en la existencia de un hamiltonia-
no. Un pronto ejemplo de eso fue la máquina de 
Boltzmann, propuesta por Hinton y colaboradores 
[2] y, más recientemente, el modelo de memoria 
asociativa densa, que define redes con enorme ca-
pacidad de almacenamiento [9,10].  

En el ámbito de la mecánica estadística, don-
de la emergencia de propiedades macroscópicas 
en sistemas de partículas interactuantes era un 
concepto bien establecido, la semejanza entre el 
modelo de Hopfield y sistemas magnéticos des-
ordenados, particularmente con los vidrios de 
espín [4], motivó, especialmente desde mediados 
de la década de 1980, a numerosos físicos a in-
vestigar las propiedades de redes neuronales, lo 
que dio impulso a la neurociencia computacional 
[5,11,12]. Desde esta disciplina se propusieron 
soluciones para resolver algunas limitaciones del 
modelo original.  

En el modelo de Hopfield, aprender nuevos pa-
trones más allá de la capacidad máxima destruye la 
estabilidad de las memorias previamente almace-
nadas, impidiendo su recuperación. Para resolver 
este problema, Giorgio Parisi propuso limitar el 
rango de las sinapsis [13]; la red resultante puede 
operar en un régimen en el que las memorias an-
tiguas decaen gradualmente al incorporar nuevas. 
Esto evita la eliminación catastrófica por interfe-
rencia, aunque la capacidad del modelo se reduce.  
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Fig. 2. Diagrama de 
fases de la red de 
Hopfield. La línea 
Tg marca la frontera 
entre la fase para-
magnética y la fase 
de vidrio de espín. 
A la temperatura TM 
emerge la fase de 
recuperación de me-
morias, la cual, para 
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el mínimo global del 
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El modelo de Hopfield emplea una regla de 
aprendizaje efectiva para almacenar patrones 
ortogonales. Sin embargo, en el mundo real, el 
conocimiento se organiza de manera jerárquica, 
en lugar de conformar conjuntos de patrones 
aislados e independientes. Para abordar esta li-
mitación, Parga y Virasoro ampliaron el modelo 
de Hopfield, permitiéndole almacenar un árbol 
jerárquico completo de categorías junto con sus 
subcategorías y relaciones. A través de herramien-
tas de la mecánica estadística, demostraron que la 
categorización surge de manera natural cuando 
la memoria asociativa incorpora un proceso de 
codificación en capas y una regla de aprendizaje 
adaptada a esta estructura [14].

La estrecha relación entre el modelo de  
Hopfield y los modelos de vidrios magnéticos es 
evidente en el libro Spin Glass and Beyond, de Gior-
gio Parisi y colaboradores [4], en el cual aparece 
reimpreso el artículo de Hopfield de 1982, así 
como también algunos de los artículos menciona-
dos [3,14].

La consideración de redes redes recurrentes en 
neurociencia fue mucho más allá de proporcionar 
modelos de memoria asociativa. Redes con aco-
plamientos aleatorios condujeron a la explicación 
de fenómenos de la actividad cortical tales como 
la irregularidad de los disparos de las neuronas 
en los circuitos corticales [15] y su asincronici-
dad [16]. En la última década, la posibilidad de 
entrenar redes neuronales en tareas cognitivas, 
similares a las utilizadas en laboratorios de elec-
trofisiología, proporcionaron modelos capaces de 
generar hipótesis sobre cómo el cerebro resuelve 
esas tareas [17,18,19].

Hopfield y la memoria asociativa densa
En el modelo de Hopfield, cuando el número de 
memorias almacenadas es considerablemente ma-
yor que el número de neuronas, la red neuronal 
entra en una fase de vidrio de espín caracterizada 
por la presencia de mínimos locales que no guar-
dan correlación con los vectores de memoria (figu-
ra 2). Esto implica una baja capacidad del modelo, 
que solo crece linealmente con el número de neu-
ronas. La cuestión de cómo conseguir un número 

de estados estables que aumente con N de manera 
supralineal y que al mismo tiempo tengan cuencas 
de atracción grandes no se resolvió hasta muy re-
cientemente, con el modelo moderno de Hopfield 
[9,10]. Como en estos nuevos modelos los patro-
nes almacenados aparecen más densamente que 
en la red tradicional de Hopfield también se los 
denomina modelos de memoria asociativa densa 
(MAD). Se trata de una familia de modelos que 
generalizan a la red de Hopfield reemplazando la 
interacción cuadrática en la función energía por 
una interacción de mayor orden o exponencial. 
Más específicamente,

E = – ∑
P

μ=1
F  ∑

N

i=1
 ξi Si   ,

donde F(x) es la función de interacción. Krotov y 
Hopfield propusieron F(x) = xn [9], obteniendo una 
capacidad Pmax ∼ Nn−1 (n > 2). Cabe notar que la 
red de Hopfield tradicional corresponde a n = 2. 
Se puede obtener una capacidad aun mayor con 
una interacción exponencial, F(x) = exp(x) [10], 
en cuyo caso Pmax ∼ exp(aN), con a < ln 2/2. El 
resultado es sorprendente porque intuitivamente 
una capacidad grande se asocia con cuencas de 
atracción pequeñas. Sin embargo, en el caso expo-
nencial, el radio de la esfera que contiene estados 
que siguiendo la dinámica del modelo convergen 
a la memoria correcta es similar al de la red de 
Hopfield [10]. 

De manera inesperada, el modelo moderno 
de Hopfield está estrechamente relacionado con 
un avance fundamental en inteligencia artificial. 
Recientemente se introdujo en el aprendizaje au-
tomático una nueva arquitectura de red neuronal 
que incorpora un mecanismo de atención y que 
ha tenido un gran impacto en el procesamiento 
del lenguaje: el transformador (transformer) [20]. 
Poco después de esta innovación, se propuso una 
variante del modelo moderno de Hopfield, que 
utiliza variables continuas y cuya regla de actuali-
zación corresponde al mecanismo de atención del 
transformador, lo que ha impulsado el desarrollo 
de nuevas arquitecturas profundas [21]. El he-
cho de que el MAD esté basado en un hamilto-
niano es de gran relevancia, ya que introduce la 
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posibilidad de interpretar las reglas que definen 
los transformadores en términos de principios fí-
sicos establecidos, como la optimización de una 
función de energía, lo que podría facilitar el diseño 
de nuevas arquitecturas más eficientes y teórica-
mente fundamentadas.

Hinton y la máquina de Boltzmann 
El modelo de Hopfield tiene varias limitaciones, 
incluyendo su carácter determinista y que una vez 
que ha sido preparado para almacenar un conjun-
to de patrones, los pesos se mantienen constantes. 
Estas características restringen su aplicabilidad a 
problemas que requieren manejar incertidumbre, 
aprender representaciones más complejas, o ajus-
tarse gradualmente a nuevos datos. Para superar 
estas limitaciones, Hinton y Sejnowski introdujeron 
la máquina de Boltzmann (MB) como una extensión 
del modelo de Hopfield, incorporando estocastici-
dad y actualización gradual de pesos [2]. 

La MB es una red neuronal recurrente diseñada 
para modelar distribuciones de probabilidad. Es 
un modelo estocástico que consta de dos tipos de 
unidades: visibles y ocultas. Las unidades visibles 
representan las variables observables del sistema 
(datos), mientras que las ocultas modelan caracte-
rísticas latentes no directamente accesibles. Estas 
últimas permiten que la MB aprenda representa-
ciones internas más ricas y capte dependencias 
complejas en los datos. Las unidades visibles se 
denotan como vi y las ocultas como hj (i = 1, . . . ,Nv  
y j = 1, . . . ,Nh , respectivamente) y el estado de la 
red se indica por (v,h). Todas las unidades tienen 
estados binarios vi, hj ∈ {0, 1}, y están conecta-
das mediante pesos simétricos (figura 3a). En 
el recuadro Máquina de Boltzmann se describe 
una arquitectura simplificada de MB (figura 3b). 
Cada unidad tiene una probabilidad de activarse 
determinada por una función de energía E(v,h), 
donde la estocasticidad del modelo facilita la ex-
ploración de configuraciones múltiples y captura 
la incertidumbre en los patrones. A diferencia del 
modelo de Hopfield, la MB no solo sirve para la 
recuperación de memoria, sino también para el 
aprendizaje generativo y la clasificación. En tareas 
generativas, la MB aprende una distribución P(v), 
permitiendo generar ejemplos nuevos mediante 
muestreo. En clasificación, parte de las unidades 
visibles se condicionan a las etiquetas de clase, 
de modo que el modelo aprende la probabilidad 
condicional P(clase|datos). Gracias a su estructura 
estocástica y la inclusión de unidades ocultas, la 
MB ofrece mayor flexibilidad y poder expresivo, 
aplicándose en un rango más amplio de tareas en 
comparación con el modelo de Hopfield.

En una MB, los pesos wij se actualizan gradual-
mente siguiendo una regla de aprendizaje basa-
da en gradientes, con el objetivo de minimizar la 
energía promedio del sistema y ajustar la distri-
bución modelada P(v,h) a los datos observados. El 

Máquina de Boltzmann

La máquina de Boltzmann restringida (MBR) es una red de 
dos capas en la que solo hay conexiones entre unidades visibles 
y ocultas (figura 3b). 

Su función de energía E(v,h) para una configuración específica 
(v,h) es

E(v,h) = –∑
i,j

wij vi hj –∑
i

bi vi  –∑
j

cjhj  ,

donde wij es el peso entre la unidad visible i y la oculta j; bi y cj son 
sesgos asociados a esas unidades, respectivamente.

La probabilidad conjunta de (v,h) está dada por la distribución 
de Boltzmann

P(v,h) = e–E(v,h)
————Z  ,  Z = ∑

v,h
e– E(v,h) , 

donde Z es la función de partición.
La probabilidad marginal de los estados visibles, que es rele-

vante para los datos observables (la imagen binaria v), es

P(v) = ∑
h

P(v,h) .

La probabilidad de que la red asigna a una imagen de entre-
namiento puede aumentarse ajustando los pesos y sesgos para 
reducir su energía y aumentar la de otras, especialmente aquellas 
con energías bajas, ya que contribuyen significativamente a Z. El 
aprendizaje ajusta los pesos wij para maximizar la probabilidad 
de los datos con el método de gradiente. La derivada de P(v) con 
respecto al peso wij es

∂ log P(v)——————∂wij
 = ⟨vihj⟩data − ⟨vihj⟩model

que nos da la regla de aprendizaje

Δwij = η(⟨vihj⟩data − ⟨vihj⟩model), 

siendo ⟨.⟩data y ⟨.⟩model valores medios tomados con los datos o con 
el modelo; η es la tasa de aprendizaje. Como en una MBR no exis-
ten conexiones directas ni entre las unidades ocultas ni entre las 
unidades visibles, es muy sencillo obtener una muestra de ⟨vihj⟩data. 

Dada una imagen de entrenamiento seleccionada aleatoriamen-
te, v, el estado binario hj de cada unidad oculta j se establece en 1 
con probabilidad  

P(hj = 1|v) = σ  ∑
i

wij vi  + cj   ,

donde σ(x) = 1———1 + e–x  es la función sigmoide.
También es muy fácil obtener una muestra del estado de una 

unidad visible, dado un vector oculto h

P(vi = 1|h) = σ  ∑
j

wij hj  + bi  .

Obtener una muestra de ⟨vihj⟩model es mucho más complicado. 
Para lograrlo, se puede iniciar desde un estado aleatorio de las 
unidades visibles y ejecutar un muestreo de Gibbs alternante du-
rante un tiempo prolongado. No obstante, Hinton introdujo un 
procedimiento mucho más rápido [21]. La optimización de los 
sesgos b y c es similar.
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entrenamiento de la MB, tal como fue concebida 
inicialmente por Hinton y Sejnowski [2], enfrenta 
serias dificultades computacionales debido a la 
necesidad de realizar muestreo para implementar 
la regla de aprendizaje basada en gradientes. Este 
proceso requiere aproximar la distribución de 
probabilidad conjunta P(v,h) mediante métodos 
como el simulated annealing (recocido simulado), 
un algoritmo estocástico que explora el espacio de 
configuraciones reduciendo gradualmente la tem-
peratura del sistema. Sin embargo, este método es 
extremadamente lento, ya que puede requerir un 
gran número de iteraciones para converger a una 
solución cercana al equilibrio. Este coste compu-
tacional limita significativamente la escalabilidad 
del modelo y su aplicación práctica en problemas 
grandes.

Para superar estas limitaciones, se introdujo la 
máquina de Boltzmann restringida (MBR) [21]. 
La MBR simplifica la estructura de la red origi-
nal eliminando las conexiones entre las unidades 
de un mismo tipo (figura 3b), lo que facilita su 
entrenamiento (véase el recuadro Máquina de 
Boltzmann). Esta restricción reduce drástica-
mente la complejidad computacional del mues-
treo, ya que las unidades visibles y ocultas son 
condicionalmente independientes entre sí dado 
el estado de las otras. Las MBR han demostrado 
ser especialmente útiles en el preentrenamiento 
de redes neuronales profundas [22], facilitando 
el aprendizaje.

Adicionalmente, Hinton introdujo la regla de 
aprendizaje llamada divergencia contrastiva [21], 
que proporciona una estimación más eficiente al 
gradiente de aprendizaje. En lugar de esperar a 
que el muestreo alcance el equilibrio, la divergen-
cia contrastiva utiliza una cantidad fija y pequeña 
de pasos de muestreo de Gibbs para estimar la 
distribución posterior, reduciendo drásticamen-
te el tiempo de entrenamiento sin sacrificar de-
masiado la calidad del aprendizaje. Aunque esta 
técnica no garantiza una estimación precisa del 
gradiente, en la práctica se ha mostrado efectiva 
para entrenar la MBR y aprender representacio-
nes útiles.

En resumen, la MBR resuelve el problema de 
la ineficiencia en el muestreo al simplificar la es-
tructura del modelo, mientras que la divergencia 
contrastiva acelera el aprendizaje aproximando 
el gradiente de manera computacionalmente efi-
ciente. Estas innovaciones han permitido la am-
plia aplicación de MBR en diversos problemas de 
aprendizaje automático.

Hinton y la retropropagación de errores
En la contribución inicial de Hinton y colaborado-
res, se estableció formalmente el marco de retro-
propagación (backpropagation) [23]. El objetivo 
del algoritmo es minimizar por el método de gra-
diente una función de coste C(ŷ, y), que mide la 

diferencia entre las salidas predichas  ̂y de una red 
neuronal en capas (figura 3c) y las verdaderas y. 
En una red con pesos w y entradas x, el proce-
dimiento consiste en: 1) una propagación hacia 
adelante en la que se calcula la salida de la red ŷ 
y se evalúa el coste C(ŷ, y); 2) una retropropaga-
ción del error en la que se calcula el gradiente de 
C usando la regla de la cadena

∂C——∂wij
 = ∂C——∂aj

 ∙ ∂aj———∂wij

donde aj es la activación de la capa intermedia. 
Finalmente se actualizan los pesos: wij ← wij – η ∂C——∂wij

,  
donde η es la tasa de aprendizaje.

Aunque el trabajo de 1986 tuvo un impacto ini-
cial significativo, el algoritmo de retropropagación 
no alcanzó su auge hasta finales de la década de 
2000. Esto se debió a varios factores: 1) Limitacio-
nes computacionales: el hardware disponible en 
los años 1980 y 1990 no permitía entrenar redes 
neuronales grandes en tiempos razonables. 2) fal-
ta de datos: no existían grandes conjuntos de datos 
etiquetados, que son esenciales para demostrar el 
potencial de las redes neuronales profundas [22]. 
3) competencia de otros métodos: Las máquinas 
de soporte vectorial y otros enfoques dominaron 
el aprendizaje automático.

Los trabajos de Hopfield y Hinton, inspirados 
en la física, contribuyeron a revitalizar el apren-
dizaje automático y a reformular principios clave 
de las redes neuronales. Sus aportes introduje-
ron conceptos esenciales en la inteligencia artifi-
cial. El modelo de Hopfield desempeñó un papel 
fundamental en el desarrollo de la neurocien-
cia teórica y computacional actual, atrayendo 
a físicos al estudio de los sistemas neuronales. 
También impulsó un enfoque más centrado en 
las propiedades emergentes de los circuitos ce-
rebrales, abriendo nuevas perspectivas sobre el 
procesamiento de la información en el cerebro. 
Este reconocimiento a Hopfield y Hinton pone 
de relieve el carácter interdisciplinario de la 
ciencia contemporánea, donde la convergencia 
entre disciplinas sigue ampliando las fronteras 
del conocimiento.

Agradecimientos
Deseo expresar mi agradecimiento a Luis Serra-
no Fernández por la realización de las figuras que 
ilustran este comentario.

Referencias
[1]	 J. J. Hopfield, Neural networks and physical systems 

with emergent collective computational abilities, 
Proceedings of the National Academy of Sciences 
79(8), 2554 (1982).

[2]	 G. E. Hinton y T. J. Sejnowski, Learning and relear-
ning in Boltzmann machines, Parallel Distributed 
Processing: Explorations in the Microstructure of 
Cognition 1, 282 (1986).



Premio Nobel de Física 2024   •  Comentario invitado

Revista Española de Física  •  39-1  •  enero-marzo 2025  53

[3]	 D. J. Amit, H. Gutfreund y H. Sompolinsky, Storing 
infinite numbers of patterns in a spin-glass model 
of neural networks, Physical Review Letters 55(14), 
1530 (1985).

[4]	 M. Mézard, G. Parisi y M. A. Virasoro, Spin Glass 
Theory and Beyond: An Introduction to the Replica 
Method and Its Applications (World Scientific, 1987).

[5]	 D. J. Amit, Modeling Brain Function: The World of 
Attractor Neural Networks (Cambridge University 
Press, 1989).

[6]	 S. Ramón y Cajal, Estructura de los centros ner-
viosos de las aves, Revista Trimestral de Histología 
Normal y Patológica 1, 1 (1888).

[7]	 L. De No, Studies on the structure of the cerebral 
cortex, Journal für Psychologie und Neurologie 45, 
381 (1933).

[8]	 M. Khona y I. R. Fiete, Attractor and integrator net-
works in the brain, Nature Reviews Neuroscience 
23(12), 744 (2022).

[9]	 D. Krotov y J. J. Hopfield, Dense associative me-
mory for pattern recognition, Advances in Neural 
Information Processing Systems 29 (NeurIPS Proce-
edings, 2016).

[10]	 M. Demircigil, J. Heusel, M. Löwe, S. Upgang y F. 
Vermet, On a model of associative memory with 
huge storage capacity, Journal of Statistical Physics 
168, 288 (2017).

[11]	 J. Hertz, A. Krogh y R. G. Palmer, Introduction to 
the Theory of Neural Computation (Addison-Wesley, 
1991).

[12]	 E. Domany, J. L. Van Hemmen y K. Schulten, Models 
of Neural Networks I (Springer-Verlag, 1995).

[13]	 G. Parisi, A memory which forgets, Journal of Physics 
A: Mathematical and General 19(10), L617 (1986).

[14]	 N. Parga y M. A. Virasoro, The ultrametric organi-
zation of memories in a neural network, Journal de 
Physique 47(11), 1857 (1986).

[15]	 C. Van Vreeswijk y H. Sompolinsky, Chaos in neu-
ronal networks with balanced excitatory and inhibi-
tory activity, Science 274(5293), 1724 (1996).

[16]	 A. Renart, J. De La Rocha, P. Bartho, L. Hollender, N. 
Parga, A. Reyes y K. D. Harris, The asynchronous state 
in cortical circuits, Science 327(5965), 587 (2010).

[17]	 V. Mante, D. Sussillo, K.v. Shenoy y W. T. Newso-
me, Context-dependent computation by recurrent 
dynamics in prefrontal cortex, Nature 503(7474), 
78 (2013).

[18]	 F. Carnevale, V. De Lafuente, R. Romo, O. Barak 
y N. Parga, Dynamic control of response criterion 
in premotor cortex during perceptual detection 
under temporal uncertainty, Neuron 86(4), 1067 
(2015).

[19]	 L. Serrano-Fernández, M. Beirán y N. Parga, 
Emergent perceptual biases from state-space geo-
metry in trained spiking recurrent neural networks, 
Cell Reports 43(7), 114412 (2024).  

[20]	 A. Vaswani, Attention Is All You Need, Advances in 
Neural Information Processing Systems (NeurIPS 30, 
2017).

[21]	 H. Ramsauer et al., Hopfield Networks Is All You 
Need, Proceedings of the International Conference 
on Learning Representations (ICLR, 2021).

[22]	 G. E. Hinton, Training products of experts by mini-
mizing contrastive divergence, Neural Computation 
14(8), 1771 (2002).

[23]	 Y. Lecun, Y. Bengio y G. E. Hinton, Deep learning, 
Nature 521(7553), 436 (2015).

[24]	 D. E. Rumelhart, G. E. Hinton y R. J. Williams, Lear-
ning representations by back-propagating errors, 
Nature 323(6088), 533 (1986).

Néstor Parga  
Depto. de Fïsica Teórica
Universidad Autónoma  

de Madrid


