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ElPremio Nobel de F-|S|ca. del afio 2024 marca un hito Reconocimiento a las redes neuronales
fundamental en la historia de la ciencia, ya que, por John J. Hopfield y Geoffrey Hinton recibieron el premio No-
primera vez, se otorgd a avances en redes neuronales, bel de Fisica por sus contribuciones al desarrollo de las re-
disciplina que impulsa el aprendizaje automatico des neuronales artificiales. El modelo de memoria asociativa

propuesto por Hopfield [1] revel6 que el almacenamiento y
la recuperacién de informacién en redes neuronales pue-
den surgir como propiedades emergentes de su dindmica. El

y la inteligencia artificial en la actualidad. Este
reconocimiento pone de manifiesto el profundo impacto

de este campo, destacando su papel esencial en la modelo se inspird en conceptos de sistemas magnéticos, es-
tl’anSfOI'maCIOH tantO de lOS marcos teorICOS como de laS tableciendo una analogia entre el aprendizaje en redes neu-
aplicaciones practicas en la ciencia contemporanea. ronales y la dindmica colectiva de espines interactuantes.
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Fig. 1. (a) Red de Hopfield. S, indica el estado de la neurona i-ésima a un tiempo fijo de la dindmica de lared. J es el acoplamiento simétrico entre las unidades
1y j, que se construye en términos de las P memorias almacenadas en la red. (b) Memoria asociativa en una red de Hopfield. En la parte superior, el paisaje
de energia, donde se almacenan tres patrones, por ejemplo, representaciones de la letra A y otras dos letras, utilizando circulos y espacios en blanco. En la
parte inferior: a la derecha, la representacion del patrén A; a la izquierda, una version ruidosa del mismo con un 10 % de ruido. La red, al ser inicializada
con una version alterada del patrén, evoluciona hasta recuperar completamente el patrén memorizado A, corrigiendo asi los errores. La red posee estados
de mayor energia. La zona en gris indica la cuenca de atraccién del patrén A.
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Modelo de Hopfield

El modelo de Hopfield [1] es una red neuronal recu-
rrente que almacena P patrones de actividad &/, con
i=1,..., Nrepresentando las N neuronas de la red, y
u=1,...,Pindicando los distintos patrones. Cada com-
ponente espacial &' es una variable binaria que toma los
valores ¢/'€ {—1,1}. El estado de actividad de la neurona
i en el tiempo t se denota como S(¢), con S,(¢) € {—1,1}.
La actualizacién del estado de cada neurona sigue la
siguiente regla

S{t+1)=sgn (ﬁ;],;sj(t)).

donde J; son las conexiones sinapticas entre las neu-
ronas i y j, y sgn(x) toma los valores 1 six >0y -1 si
x < 0. Los patrones de actividad &/'se almacenan en la
red mediante una regla hebbiana para las sinapsis (se
asume J; = 0 para evitar autoconexiones)

J= 2 5 &

Para demostrar que en el limite N — co los patrones
de actividad /'son atractores de la dindmica, suponga-
mos que el estado inicial S,(0) esta cerca de uno de los
patrones, &’. Entonces S(t + 1) es
N
=1

J=1 p=1

P
Si(t+1) =sgn ( & f,-“%(t))-
En el tiempo, t S(t) ~ &". La expresion entre los pa-
réntesis se puede descomponer

%z £50+3 %z £'5(0).

El primer término corresponde al patrén correcto
u =v, mientras que el segundo representa interferencia
de los otros patrones. Consideremos el limite de N — co.
En este limite, la interferencia de los patrones u # v tien-
de a cero, ya que los patrones & son independientes y
no correlacionados entre si. Por lo tanto, en el limite de
N — oo la dinamica del modelo de Hopfield hace que el
estado de la red converja al patrén &, lo que demues-
tra que los patrones almacenados son atractores de la
dinamica.

La dindmica del modelo de Hopfield puede inter-
pretarse como la evolucién a temperatura cero de un
sistema de fisica estadistica. En este contexto, el siste-
ma minimiza una funcién de energia (o hamiltoniano)
definida como:

__ 1
E=- 32,55

La actualizacidn de cada neurona corresponde a un
proceso de descenso de energia, ya que la regla de ac-
tualizacién S;(t + 1) = sgn (Z,-],;S(f)) reduce el valor de E
en cada paso de la dindmica. Los atractores correspon-
den a los minimos locales de E, que son precisamente
los patrones almacenados &/ (figura 1b).
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Esta relacion resalta el vinculo profundo entre la
fisica estadistica y la neurociencia computacio-
nal. Por otro lado, la maquina de Boltzmann, de-
sarrollada por Hinton y colaboradores [2], aplica
principios probabilisticos de la fisica estadistica
para habilitar el aprendizaje en redes neuronales.
Este enfoque supuso un avance crucial para el
aprendizaje automatico, facilitando la deteccién
de patrones en datos mediante aprendizaje no
supervisado. Los trabajos de Hopfield y Hinton
unieron conceptos de la mecanica estadistica con
la neurociencia computacional y el aprendizaje
automatico, proporcionando un marco teérico
que influiria profundamente en estas disciplinas
y en muchas otras areas de la ciencia y de la tec-
nologia.

Hopfield y la memoria asociativa

En su trabajo de 1982, Hopfield propuso un mo-
delo de red neuronal recurrente compuesto por
simples neuronas binarias [1], con una dindmica
gobernada por un principio de minimizacién de
energia (figura 1a; véase el recuadro Modelo de
Hopfield). Su gran contribucién radicé en mos-
trar que estas redes podian almacenar multiples
patrones de memoria.

Bajo determinadas condiciones, los patrones
almacenados actian como atractores de la dina-
mica del modelo, es decir, como puntos fijos es-
tables. El estado inicial de la red determina hacia
qué atractor converge su evolucidn. Cada atractor
posee una cuenca de atraccion, definida como el
conjunto de estados iniciales que conducen a di-
cho patrén (figura 1b). Debido a que un patrén
almacenado puede ser recuperado a partir de una
versién incompleta o ruidosa del mismo, se dice
que la memoria es de tipo autoasociativa.

La solucién de la termodinamica del modelo
de Hopfield [3] permiti6 establecer las condicio-
nes bajo las cuales los patrones almacenados son
atractores estables de la dindmica del sistema, en
funcién de la temperatura T =1/fy del parametro
de carga @ = P/N, donde N es el nimero de neu-
ronas y P es el nimero de patrones almacenados.
Para valores bajos de la temperatura Ty una carga
a pequefia, los patrones almacenados {£/'} (u = 1,
..., P) son atractores estables (véase el recuadro
Modelo de Hopfield). En esta fase, la actividad de
las neuronas se alinea con un patrén . Su valor
medio (S;) cumple

FIEE =M ETSE=0 wE,
donde M depende de a y f. Existen dos estados
de recuperacion, uno con M>0 y otro con M<0.
En esta situacion, la red neuronal puede recupe-
rar de manera confiable un patrén almacenado
incluso a partir de una version parcial o ruidosa,
gracias a la presencia de una cuenca de atraccién
suficientemente amplia alrededor de cada patron.
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Esta fase es conocida como la fase de recuperacion
(figura 2).

Los estados de recuperacion emergen de forma
metastable por debajo de T,,(a) y se convierten en
minimos globales estables por debajo de T,(a), lo
que marca una transicion de primer orden. En esta
region intermedia entre T.(a) y T,,(a) aparecen es-
tados que son configuraciones de lared que no co-
rresponden exactamente a patrones almacenados,
pero que tienen una energia relativamente baja y
pueden atrapar transitoriamente la dindmica de
la red. Estos estados estan relacionados con con-
figuraciones cercanas a los patrones almacenados,
pero no son globalmente estables. A valores altos
de a o T, entre T,,(a) y T,(), el sistema entra en
la fase de vidrio de espin (figura 2). En esta fase,
los estados de la red no estan correlacionados
con los patrones almacenados. Los estados de vi-
drio de espin son configuraciones de energia baja
pero desordenadas, donde las neuronas presentan
una polarizacién espontanea que no refleja ningu-
na estructura de los patrones almacenados. Este
comportamiento es caracterizado por un parame-
tro de orden «a, que mide la magnitud del desor-
den interno en la red, y no hay alineamiento con
ningun patrén [4]

4= ¥ L EP>0 FTE)E=0 vu,

Finalmente, para temperaturas altas, T>T,(a),
el sistema se encuentra en una fase paramagnéti-
ca, donde las neuronas no presentan polarizacion
espontanea, es decir, (S;) = 0 (figura 2). El diagra-
ma de fases refleja la naturaleza rica y compleja
del modelo de Hopfield, que combina propiedades
emergentes propias de sistemas fisicos con capa-
cidades computacionales relacionadas con el al-
macenamiento y recuperacion de informacién [5].

Tras la aparicién del articulo de Hopfield, pu-
blicado en la seccién de biofisica de la revista
PNAS [1], las reacciones se extendieron en varias
areas de la ciencia. En neurociencia, el trabajo de
Hopfield surgi6é en un momento de cambio de pa-
radigma. La tradicional {doctrina de una neurona,
que habia dominado desde los estudios de Ramoén
y Cajal [6], se basaba en la idea de que las capa-
cidades cognitivas del cerebro eran atribuibles a
neuronas individuales. Sin embargo, una nueva
perspectiva comenzaba a extenderse: la doctrina
de los circuitos cerebrales, segtn la cual las pro-
piedades cognitivas del cerebro no dependen de
neuronas aisladas, sino de las interacciones den-
tro de poblaciones neuronales [7]. El modelo de
Hopfield representé un avance crucial hacia esta
vision, al demostrar que una red neuronal podia
recuperar informacién almacenada en las conexio-
nes sinapticas entre neuronas, proporcionando un
modelo matematico robusto de la memoria aso-
ciativa. Por otra parte, la presencia de atractores
se utiliz6 para proponer modelos en los que la in-
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formacion podria mantenerse en memoria en la
forma de actividad neuronal persistente durante
tiempos del orden de segundos. Aunque este no
es el unico mecanismo cerebral que podria dar
lugar a la memoria de corto plazo, esta propuesta
ha recibido una enorme atencién tanto conceptual
como experimentalmente [8].

En inteligencia artificial contribuyé a focalizar
la atencién en redes neuronales artificiales con ar-
quitectura recurrente, en la que todas las unidades
que componen la red pueden conectarse entre si.
También motivé un enfoque de la inteligencia ar-
tificial basado en la existencia de un hamiltonia-
no. Un pronto ejemplo de eso fue la maquina de
Boltzmann, propuesta por Hinton y colaboradores
[2] y, mas recientemente, el modelo de memoria
asociativa densa, que define redes con enorme ca-
pacidad de almacenamiento [9,10].

En el ambito de la mecanica estadistica, don-
de la emergencia de propiedades macroscdpicas
en sistemas de particulas interactuantes era un
concepto bien establecido, la semejanza entre el
modelo de Hopfield y sistemas magnéticos des-
ordenados, particularmente con los vidrios de
espin [4], motivo, especialmente desde mediados
de la década de 1980, a numerosos fisicos a in-
vestigar las propiedades de redes neuronales, lo
que dio impulso a la neurociencia computacional
[5,11,12]. Desde esta disciplina se propusieron
soluciones para resolver algunas limitaciones del
modelo original.

En el modelo de Hopfield, aprender nuevos pa-
trones mas alla de la capacidad maxima destruye la
estabilidad de las memorias previamente almace-
nadas, impidiendo su recuperacion. Para resolver
este problema, Giorgio Parisi propuso limitar el
rango de las sinapsis [13]; la red resultante puede
operar en un régimen en el que las memorias an-
tiguas decaen gradualmente al incorporar nuevas.
Esto evita la eliminacién catastréfica por interfe-
rencia, aunque la capacidad del modelo se reduce.

0.15

Fig. 2. Diagrama de
fases de lared de
Hopfield. La linea

T, marca la frontera
entre la fase para-
magnética y la fase
de vidrio de espin.
Ala temperatura T,
emerge la fase de
recuperacion de me-
morias, la cual, para
T<T, se convierte en
el minimo global del
sistema.
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Fig. 3. (a) M4quina
de Boltzmann con
unidades visibles
(azul claro) y ocultas
(azul oscuro). Las
lineas indican las co-
nexiones simétricas
entre las unidades.
(b) Maquina de Boltz-
mann Restringida sin
sesgos. Se emplean
las mismas conven-
ciones que en el panel
a. (c) Arquitectura de
red de avance directo
(red feedforward) con
una unica capa de
neuronas ocultas. Las
dos salidas de esta
red se indican con

yiey,

El modelo de Hopfield emplea una regla de
aprendizaje efectiva para almacenar patrones
ortogonales. Sin embargo, en el mundo real, el
conocimiento se organiza de manera jerarquica,
en lugar de conformar conjuntos de patrones
aislados e independientes. Para abordar esta li-
mitacién, Parga y Virasoro ampliaron el modelo
de Hopfield, permitiéndole almacenar un arbol
jerarquico completo de categorias junto con sus
subcategorias y relaciones. A través de herramien-
tas de la mecanica estadistica, demostraron que la
categorizacion surge de manera natural cuando
la memoria asociativa incorpora un proceso de
codificacién en capas y una regla de aprendizaje
adaptada a esta estructura [14].

La estrecha relaciéon entre el modelo de
Hopfield y los modelos de vidrios magnéticos es
evidente en el libro Spin Glass and Beyond, de Gior-
gio Parisi y colaboradores [4], en el cual aparece
reimpreso el articulo de Hopfield de 1982, asi
como también algunos de los articulos menciona-
dos [3,14].

La consideracién de redes redes recurrentes en
neurociencia fue mucho mas alla de proporcionar
modelos de memoria asociativa. Redes con aco-
plamientos aleatorios condujeron a la explicaciéon
de fenémenos de la actividad cortical tales como
la irregularidad de los disparos de las neuronas
en los circuitos corticales [15] y su asincronici-
dad [16]. En la dltima década, la posibilidad de
entrenar redes neuronales en tareas cognitivas,
similares a las utilizadas en laboratorios de elec-
trofisiologia, proporcionaron modelos capaces de
generar hipétesis sobre como el cerebro resuelve
esas tareas [17,18,19].

Hopfield y la memoria asociativa densa

En el modelo de Hopfield, cuando el nimero de
memorias almacenadas es considerablemente ma-
yor que el nimero de neuronas, la red neuronal
entra en una fase de vidrio de espin caracterizada
por la presencia de minimos locales que no guar-
dan correlacién con los vectores de memoria (figu-
ra 2). Esto implica una baja capacidad del modelo,
que solo crece linealmente con el nimero de neu-
ronas. La cuestiéon de como conseguir un niimero

50 Revista Espanola de Fisica ® 39-1 ® enero-marzo 2025

de estados estables que aumente con N de manera
supralineal y que al mismo tiempo tengan cuencas
de atracciéon grandes no se resolvié hasta muy re-
cientemente, con el modelo moderno de Hopfield
[9,10]. Como en estos nuevos modelos los patro-
nes almacenados aparecen mas densamente que
en la red tradicional de Hopfield también se los
denomina modelos de memoria asociativa densa
(MAD). Se trata de una familia de modelos que
generalizan a la red de Hopfield reemplazando la
interaccién cuadratica en la funcién energia por
una interacciéon de mayor orden o exponencial.
Mas especificamente,

donde F(x) es la funcién de interaccion. Krotov y
Hopfield propusieron F(x) = x, [9], obteniendo una
capacidad P,,, ~ N*! (n > 2). Cabe notar que la
red de Hopfield tradicional corresponde a n = 2.
Se puede obtener una capacidad aun mayor con
una interaccién exponencial, F(x) = exp(x) [10],
en cuyo caso P, ~ exp(aN), con a < In 2/2. El
resultado es sorprendente porque intuitivamente
una capacidad grande se asocia con cuencas de
atraccion pequefias. Sin embargo, en el caso expo-
nencial, el radio de la esfera que contiene estados
que siguiendo la dindmica del modelo convergen
a la memoria correcta es similar al de la red de
Hopfield [10].

De manera inesperada, el modelo moderno
de Hopfield esta estrechamente relacionado con
un avance fundamental en inteligencia artificial.
Recientemente se introdujo en el aprendizaje au-
tomatico una nueva arquitectura de red neuronal
que incorpora un mecanismo de atencién y que
ha tenido un gran impacto en el procesamiento
dellenguaje: el transformador (transformer) [20].
Poco después de esta innovacion, se propuso una
variante del modelo moderno de Hopfield, que
utiliza variables continuas y cuya regla de actuali-
zacion corresponde al mecanismo de atencion del
transformador, lo que ha impulsado el desarrollo
de nuevas arquitecturas profundas [21]. El he-
cho de que el MAD esté basado en un hamilto-
niano es de gran relevancia, ya que introduce la

Entrada Oculta Salida
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posibilidad de interpretar las reglas que definen
los transformadores en términos de principios fi-
sicos establecidos, como la optimizacién de una
funcién de energia, lo que podria facilitar el disefio
de nuevas arquitecturas mas eficientes y tedrica-
mente fundamentadas.

Hinton y la maquina de Boltzmann

El modelo de Hopfield tiene varias limitaciones,
incluyendo su caracter determinista y que una vez
que ha sido preparado para almacenar un conjun-
to de patrones, los pesos se mantienen constantes.
Estas caracteristicas restringen su aplicabilidad a
problemas que requieren manejar incertidumbre,
aprender representaciones mas complejas, o ajus-
tarse gradualmente a nuevos datos. Para superar
estas limitaciones, Hinton y Sejnowski introdujeron
lamaquina de Boltzmann (MB) como una extensién
del modelo de Hopfield, incorporando estocastici-
dad y actualizacién gradual de pesos [2].

La MB es una red neuronal recurrente disefiada
para modelar distribuciones de probabilidad. Es
un modelo estocastico que consta de dos tipos de
unidades: visibles y ocultas. Las unidades visibles
representan las variables observables del sistema
(datos), mientras que las ocultas modelan caracte-
risticas latentes no directamente accesibles. Estas
ultimas permiten que la MB aprenda representa-
ciones internas mas ricas y capte dependencias
complejas en los datos. Las unidades visibles se
denotan como v,y las ocultas como h]. (i=1,...,N,
yj=1,...,N,, respectivamente) y el estado de la
red se indica por (v,h). Todas las unidades tienen
estados binarios v, hl. € {0, 1}, y estan conecta-
das mediante pesos simétricos (figura 3a). En
el recuadro Maquina de Boltzmann se describe
una arquitectura simplificada de MB (figura 3b).
Cada unidad tiene una probabilidad de activarse
determinada por una funcién de energia E(v,h),
donde la estocasticidad del modelo facilita la ex-
ploracién de configuraciones multiples y captura
la incertidumbre en los patrones. A diferencia del
modelo de Hopfield, la MB no solo sirve para la
recuperacién de memoria, sino también para el
aprendizaje generativo y la clasificacion. En tareas
generativas, la MB aprende una distribucién P(v),
permitiendo generar ejemplos nuevos mediante
muestreo. En clasificacion, parte de las unidades
visibles se condicionan a las etiquetas de clase,
de modo que el modelo aprende la probabilidad
condicional P(clase|datos). Gracias a su estructura
estocastica y la inclusion de unidades ocultas, la
MB ofrece mayor flexibilidad y poder expresivo,
aplicandose en un rango mas amplio de tareas en
comparacion con el modelo de Hopfield.

En una MB, los pesos w; se actualizan gradual-
mente siguiendo una regla de aprendizaje basa-
da en gradientes, con el objetivo de minimizar la
energia promedio del sistema y ajustar la distri-
bucién modelada P(v,h) alos datos observados. El

Maquina de Boltzmann

La maquina de Boltzmann restringida (MBR) es una red de
dos capas en la que solo hay conexiones entre unidades visibles
y ocultas (figura 3b).

Su funcién de energia E(v,h) para una configuracién especifica
(vh) es

E(vh) =-Yw,v,h,-Ybyv, -¥ch,,
Lj 1 J
donde w; es el peso entre la unidad visible i y la oculta j; b, y ¢; son
sesgos asociados a esas unidades, respectivamente.

La probabilidad conjunta de (v,h) esta dada por la distribucién

de Boltzmann

e-Evh)
Z )

P(vh) = Z=Yefom,

v,h
donde Z es la funcién de particion.

La probabilidad marginal de los estados visibles, que es rele-
vante para los datos observables (la imagen binaria v), es

P(v) = %]P(v,h) .

La probabilidad de que la red asigna a una imagen de entre-
namiento puede aumentarse ajustando los pesos y sesgos para
reducir su energia y aumentar la de otras, especialmente aquellas
con energias bajas, ya que contribuyen significativamente a Z. El
aprendizaje ajusta los pesos w; para maximizar la probabilidad
de los datos con el método de gradiente. La derivada de P(v) con
respecto al peso w; es

dlog P(v)
OaVVij = <thj)data - (Vih]‘>m0del
que nos da la regla de aprendizaje

Awij = n((vihj)data - (vihj>model)'

siendo ()4, ¥ {-)moder Valores medios tomados con los datos o con
el modelo; 17 es la tasa de aprendizaje. Como en una MBR no exis-
ten conexiones directas ni entre las unidades ocultas ni entre las
unidades visibles, es muy sencillo obtener una muestra de (v;h) ...

Dada una imagen de entrenamiento seleccionada aleatoriamen-
te, v, el estado binario hj de cada unidad ocultaj se establece en 1
con probabilidad

P(h;=1|v)=0 (ZW,-,-VI- +cj) :

donde o(x) = T% es la funcién sigmoide.
También es muy facil obtener una muestra del estado de una
unidad visible, dado un vector oculto h

P(v,;=1lh) =0 (Zwyh,- +b,.).
J

Obtener una muestra de (v;h), ., €s mucho mas complicado.
Para lograrlo, se puede iniciar desde un estado aleatorio de las
unidades visibles y ejecutar un muestreo de Gibbs alternante du-
rante un tiempo prolongado. No obstante, Hinton introdujo un
procedimiento mucho mas rapido [21]. La optimizacién de los
sesgos b y c es similar.
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entrenamiento de la MB, tal como fue concebida
inicialmente por Hinton y Sejnowski [2], enfrenta
serias dificultades computacionales debido a la
necesidad de realizar muestreo para implementar
laregla de aprendizaje basada en gradientes. Este
proceso requiere aproximar la distribucion de
probabilidad conjunta P(v,h) mediante métodos
como el simulated annealing (recocido simulado),
un algoritmo estocastico que explora el espacio de
configuraciones reduciendo gradualmente la tem-
peratura del sistema. Sin embargo, este método es
extremadamente lento, ya que puede requerir un
gran nimero de iteraciones para converger a una
solucidn cercana al equilibrio. Este coste compu-
tacional limita significativamente la escalabilidad
del modelo y su aplicacién practica en problemas
grandes.

Para superar estas limitaciones, se introdujo la
maquina de Boltzmann restringida (MBR) [21].
La MBR simplifica la estructura de la red origi-
nal eliminando las conexiones entre las unidades
de un mismo tipo (figura 3b), lo que facilita su
entrenamiento (véase el recuadro Maquina de
Boltzmann). Esta restriccién reduce drastica-
mente la complejidad computacional del mues-
treo, ya que las unidades visibles y ocultas son
condicionalmente independientes entre si dado
el estado de las otras. Las MBR han demostrado
ser especialmente ttiles en el preentrenamiento
de redes neuronales profundas [22], facilitando
el aprendizaje.

Adicionalmente, Hinton introdujo la regla de
aprendizaje llamada divergencia contrastiva [21],
que proporciona una estimaciéon mas eficiente al
gradiente de aprendizaje. En lugar de esperar a
que el muestreo alcance el equilibrio, la divergen-
cia contrastiva utiliza una cantidad fija y pequefia
de pasos de muestreo de Gibbs para estimar la
distribucién posterior, reduciendo drasticamen-
te el tiempo de entrenamiento sin sacrificar de-
masiado la calidad del aprendizaje. Aunque esta
técnica no garantiza una estimacién precisa del
gradiente, en la practica se ha mostrado efectiva
para entrenar la MBR y aprender representacio-
nes utiles.

En resumen, la MBR resuelve el problema de
la ineficiencia en el muestreo al simplificar la es-
tructura del modelo, mientras que la divergencia
contrastiva acelera el aprendizaje aproximando
el gradiente de manera computacionalmente efi-
ciente. Estas innovaciones han permitido la am-
plia aplicaciéon de MBR en diversos problemas de
aprendizaje automatico.

Hinton y la retropropagacion de errores

En la contribucién inicial de Hinton y colaborado-
res, se establecié formalmente el marco de retro-
propagacion (backpropagation) [23]. El objetivo
del algoritmo es minimizar por el método de gra-
diente una funcién de coste C(¥, y), que mide la
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diferencia entre las salidas predichas ¥ de unared
neuronal en capas (figura 3c) y las verdaderas y.
En una red con pesos w y entradas x, el proce-
dimiento consiste en: 1) una propagacién hacia
adelante en la que se calcula la salida de la red ¥
y se evalua el coste C(¥, y); 2) una retropropaga-
cién del error en la que se calcula el gradiente de
Cusando la regla de la cadena

ac _ ac , Oaq;

ow,  da,  Ow,

donde g, es la activacion de la capa intermedia.
Finalmente se actualizan los pesos: w; < w; - n%,
donde 7 es la tasa de aprendizaje. !

Aunque el trabajo de 1986 tuvo un impacto ini-
cial significativo, el algoritmo de retropropagaciéon
no alcanzé su auge hasta finales de la década de
2000. Esto se debi6 a varios factores: 1) Limitacio-
nes computacionales: el hardware disponible en
los afios 1980 y 1990 no permitia entrenar redes
neuronales grandes en tiempos razonables. 2) fal-
ta de datos: no existian grandes conjuntos de datos
etiquetados, que son esenciales para demostrar el
potencial de las redes neuronales profundas [22].
3) competencia de otros métodos: Las maquinas
de soporte vectorial y otros enfoques dominaron
el aprendizaje automatico.

Los trabajos de Hopfield y Hinton, inspirados
en la fisica, contribuyeron a revitalizar el apren-
dizaje automatico y a reformular principios clave
de las redes neuronales. Sus aportes introduje-
ron conceptos esenciales en la inteligencia artifi-
cial. El modelo de Hopfield desempefi6 un papel
fundamental en el desarrollo de la neurocien-
cia tedrica y computacional actual, atrayendo
a fisicos al estudio de los sistemas neuronales.
También impuls6é un enfoque mas centrado en
las propiedades emergentes de los circuitos ce-
rebrales, abriendo nuevas perspectivas sobre el
procesamiento de la informacién en el cerebro.
Este reconocimiento a Hopfield y Hinton pone
de relieve el caracter interdisciplinario de la
ciencia contemporanea, donde la convergencia
entre disciplinas sigue ampliando las fronteras
del conocimiento.
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