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Introducción
En el año 1905, Albert Einstein (Ulm 1879 - Princeton,

New Jersey 1955) era un empleado en la oficina de patentes
de Berna. Fue en ese año cuando publicó tres de sus trabajos
fundamentales en el efecto fotoeléctrico, en el movimiento
Browniano y la Teoría de la Relatividad Especial, cualquie-
ra de los cuales le habría hecho merecedor de un puesto en
la historia de la Física. Este artículo se centra en el último de
ellos que fue publicado en Annalen der Physik 17, 891
(1905). No intentaremos hacer una historia detallada de
cómo Einstein llegó a formular su teoría, ni como ésta se fue
desarrollando. El lector interesado en estos aspectos puede
consultar el magnífico libro de Abraham Pais {Amsterdam
1918 - Copenhague 2000} “Subtle is the Lord... The Science
and the Life of Albert Einstein” (Oxford University Press,
1982). 

Einstein recibió el Premio Nobel de Física de 1921 “por
sus servicios a la Física Teórica, y especialmente por su des-
cubrimiento de la ley del efecto fotoeléctrico”. Pais opina
que en aquellos momentos todo el mundo era consciente de
la importancia del efecto fotoeléctrico y sus implicaciones en
los principios de la emergente Mecánica Cuántica y, si bien
no habían dudas sobre la teoría de la Relatividad Especial, la
Relatividad General y su explicación del campo gravitatorio
no eran todavía universalmente aceptadas. Independiente-
mente de la opinión de sus colegas, Einstein dedicó su dis-
curso Nobel a la Teoría de la Relatividad.

En este breve artículo intentaremos dar una idea de los
puntos conceptuales y técnicos más importantes de la Teoría
de la Relatividad Especial, sin prestar atención a cómo ésta
se fue desarrollando y de cómo fue siendo aceptada por la
comunidad científica de la primera mitad del siglo XX. La
Teoría de la Relatividad puede entenderse como un conflic-
to entre la estructura de la vigente teoría de los campos elec-
tromagnéticos y el paradigma newtoniano. Las ecuaciones
del campo electromagnético contienen necesariamente las
limitaciones que impone una velocidad de propagación fini-
ta. Einstein logró elevar a principio los elementos que sub-
yacen en esta estructura y adaptó la dinámica newtoniana a
su nuevo formalismo. Nuestro recorrido, pues, parte de la
teoría clásica del campo electromagnético.  

La teoría del campo electromagnético
James Clerk Maxwell (Edimburgo 1831 - Cambridge

1879) publicó en 1873 su famoso libro “A Treatise on
Electricity and Magnetism” en el que establecía la teoría del
campo electromagnético. En notación moderna, este campo
viene caracterizado por el vector campo eléctrico, E(t, x) y
el llamado inducción magnética, B(t, x), ambos funciones
del instante de tiempo y del punto del espacio considerado.
Si en el espacio existe una densidad de carga eléctrica ρ(t, x)
y una densidad de corriente eléctrica j(t, x), entonces E y B
vienen determinados por un conjunto de ecuaciones, conoci-

das con el nombre de ecuaciones de Maxwell, que en el
vacío y en el sistema unidades de Gauss, se escriben: 

(1)
La velocidad de la luz en el vacío es c = 299 792 458 m s–1.

Hoy en día, c es una constante fijada por convenio y que,
consecuentemente, no podemos medir puesto que se utiliza
para definir el patrón de distancia a partir del patrón de tiem-
po basado en el Cesio. Es interesante notar que hoy en día la
precisión del patrón de tiempo es inferior a la de ciertos
experimentos realizados en otros sistemas cuánticos. Tarde o
temprano, el patrón Cesio deberá ser abandonado pero la
velocidad de la luz seguirá siendo una definición.

La densidad de carga y de corriente eléctrica están rela-
cionadas a través de la ecuación de continuidad

(2)

que implica la conservación de carga total en un sistema físico.
La ley de Coulomb entre dos partículas cargadas y la

fuerza sobre una partícula en el seno de un campo electro-
magnético vienen dadas, respectivamente, por

(3)

De aquí es fácil probar a partir de (1) que en las zonas del
espacio en que la densidad de carga y de corriente eléctrica
son nulas se cumplen las ecuaciones  

(4)

Éstas son las ecuaciones que describen la propagación de
las ondas electromagnéticas en el vacío. Se puede probar que
su velocidad de propagación es c, basta tener en cuenta la
ecuación unidimensional equivalente

(5)

Introduzcamos ahora las variables η = x – ct y ξ = x + ct
y con B(η, ξ) = A(t, x) la ecuación (5) se transforma en 

(6)

cuya solución más general es

(7)

siendo f y g funciones arbitrarias cuya dependencia muestra
que c corresponde a la velocidad de propagación de los cam-
pos.

Surge entonces la pregunta: ¿son estas ecuaciones válidas
sólo en algún sistema inercial privilegiado en el que la velo-
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cidad de la luz es c? Sería de esperar, de acuerdo con las
ideas clásicas, que si un observador se moviera siguiendo un
rayo de luz con velocidad v, viera para la luz la velocidad c – v.

Una primera solución que se propusó fue suponer que las
ecuaciones de Maxwell sólo son válidas en un sistema iner-
cial ligado con el éter, que a finales del siglo XIX y princi-
pios del XX se creía llenaba todo el espacio. Por éstos tiem-
pos se hicieron múltiples experiencias para determinar nues-
tra velocidad con relación al éter, siendo, probablemente, las
más famosas las de Armand Hippolyte Louis Fizeau (París
1819 –Venteuil, Seine-et-Marne 1896) y las de Albert Abra-
ham Michelson (Strelno, Prusia 1852– Pasadena, California
1931) y colaboradores. Todas estas experiencias dieron
resultados nulos. Si bien ninguna de ellas es mencionada
explícitamente en los trabajos de Einstein, ya en el primero
de ellos hace referencia a los intentos fallidos de medir nues-
tra velocidad con relación al éter. Sorprendentemente su tra-
bajo no tiene ni una sola referencia.

La Teoría de la Relatividad de Einstein eliminaría el sen-
tido del éter ya que eleva a postulado el hecho de que la velo-
cidad de la luz es la misma en cualquier sistema de referen-
cia inercial. Todo intento de medir un sistema de referencia
privilegiado es inútil. El éter murió sin haber nacido. 

Desde un punto de vista matemático es necesario esta-
blecer que transformaciones dejan covariantes a las ecuacio-
nes de Maxwell. Entender esta simetría es el paso previo a
extenderla a toda la física clásica. El razonamiento de
Einstein es admirable. Las ecuaciones de Maxwell describen
correctamente todos los fenómenos electromagnéticos y
están asociados a velocidades lumínicas. En cambio, las
ecuaciones de Newton no se adaptan al mismo esquema. Si
entendemos el grupo de transformaciones que rigen el cam-
bio de sistema de referencia en el electromagnetismo y ele-
vamos a principio la covariancia de las ecuaciones dinámi-
cas de todo sistema bajo ese grupo, dispondremos de la
herramienta necesaria para extender la física clásica. El
grupo de simetría lleva el nombre de Poincaré.

El grupo de Poincaré
El llamado grupo de Poincaré [Henri Poincaré (Nancy

1854 - París 1912)] se define hoy día como el conjunto de
aquellas transformaciones lineales reales e inhomogéneas: 

(8)

(empleamos los índices griegos de 0 a 3 y los latinos de 1 a
3; también emplearemos ocasionalmente la notación x0 = c t,
x1 = x, x2 = y, x3 = z) que dejan invariante la distancia
Minkowskiana [Rudolf Minkowski (Estrasburgo 1895 - Ber-
keley, California 1976)]

(9)

donde dx indica la matriz columna de elementos (dx0, dx1,
dx2, dx3), dxT su traspuesta y G es la matriz cuatro por cuatro
(o métrica de Minkowski) de elementos 

(10)

Por lo tanto, una transformación es de Poincaré si y sólo si 

(11)

donde el asterisco indica tomar el complejo conjugado. De la
última de estas relaciones se deduce que (det Λ)2 = 1 y, por
lo tanto 

(12)

lo que asegura que las transformaciones consideradas tienen
inversa. Además, tomando la inversa de (11) se obtiene (Λ–1)
G(Λ–1)T = G y de esta relación resulta 

(13)

De (8) se deduce 

(14)

Con estas propiedades es inmediato probar que las trans-
formaciones de Poincaré forman un semigrupo.

Una propiedad importante que se deduce fácilmente de (13)
es Λλµ Λν

λ = gµν y si hacemos µ = ν = 0 se tiene Λ0µ Λ0
λ = 1, esto

es (Λ0
0)2 – (Λ0

k)2 = 1 de donde

(15)

Trasformaciones particularmente importantes son las
rotaciones caracterizadas por:

(16)

con 

(17)

donde n es un vector unitario y ésta transformación no es
más que una rotación de ángulo θ alrededor del eje n. Estas
transformaciones forman el grupo de las rotaciones.

Otras transformaciones particularmente importantes son
las llamadas transformaciones de Lorentz [Hendrik Antoon
Lorentz (Arnhem, Holanda 1853 - Haarlem, Holanda 1928)],
que vienen dadas por

(18)

con  

(19)

Estas transformaciones no constituyen un grupo. Sin
embargo si v1 y v2 son paralelas entonces:

(20)

Es decir que las transformaciones de Lorentz para velo-
cidades en una misma dirección forman un grupo. En parti-
cular 

(21)

Hemos mencionado las rotaciones y las transformaciones
de Lorentz porque se puede probar que cualquier transfor-
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mación de Poincaré homogénea (a ≡ 0) con det Λ = + 1 y
(Λ0

0) ≥ 1 se puede escribir de forma única como

(22)

La isotropía del espacio nos garantiza la invariancia bajo
rotaciones y por tanto a partir de este momento sólo se ten-
dremos en cuenta las transformaciones de Lorentz.

Una forma simple de deducir las transformaciones de
Lorentz es la siguiente. Supongamos que en el instante t = 0
se emite desde el origen de un sistema de coordenadas (O, x,
y, z) una señal luminosa. Un observador inercial S, solidario
con este sistema de referencia, verá que en un cierto instan-
te t los puntos alcanzados por el frente de ondas son aquellos
que cumplen

(23)

Consideremos ahora un segundo observador inercial S'
tal que en t = 0, los orígenes de sus sistemas de referencia
coincidan O = O' y que (O', x', y', z') y que se mueve con
relación al primer sistema de referencia con una velocidad v
paralela al eje Ox. La constancia de la velocidad de la luz en
todos los sistemas inerciales obliga a que S' verá que los
frentes de ondas deben satisfacer la ecuación

(24)

¿Qué relación hay entre las coordenadas medidas por
ambos observadores? Si exigimos que, de acuerdo a la
homogeneidad del tiempo y del espacio, las coordenadas
usadas por S' estén relacionadas linealmente con las usadas
por S entonces se encuentra que 

(25)

Como el producto de esta transformación y su inversa
debe dar la identidad entonces

(26)

La simetría exige que las transformaciones de las coor-
denadas y y z no cambien si cambiamos v por –v y por tanto
A(v) = 1 con lo que las transformaciones (25) se convierten
en 

(27)

que no son más que un caso particular de (19), que se obtie-
ne haciendo v = (v, 0, 0).

Notemos que, si v « c, las transformaciones de Lorentz se
convierten en las transformaciones de Galileo [Galilei
Galileo (Pisa 1564 - Arcetri, cerca de Florencia 1642)]

(28)

que son las que conectan dos sistemas inerciales en el marco
de la mecánica clásica no relativista.

Es evidente que las ecuaciones (4) no mantienen su forma
bajo las transformaciones de Galileo. ¿La mantienen bajo las
transformaciones de Lorentz? La contestación afirmativa a
esta pregunta es anterior al trabajo de Einstein, pues en 1887
Woldemar Voigt (Leipzig 1850 - Gotinga 1919) se dio cuen-

ta que las ecuaciones (4) mantenían su forma bajo la trans-
formación (21) con A(v) = (1 – (v/c)2)1/2. El resultado es ver-
daderamente importante pero pasó desapercibido y el mismo
Lorentz así lo reconoció en 1906 en unas conferencias que
dio en la Columbia University. Evidentemente si los siste-
mas inerciales estaban relacionados por las transformaciones
de Lorentz entonces las ecuaciones de Maxwell son válidas
en todos los sistemas inerciales, las experiencias de tipo
Michelson y similares dan forzosamente resultados nulos y
no hay más remedio que revisar la mecánica clásica. Este
debió ser el razonamiento de Einstein. 

Cinemática relativista
Antes de analizar como debe modificarse la mecánica

clásica, nos detenemos a considerar algunas consecuencias
de las transformaciones de Lorentz.

Composición de velocidades

Supongamos dos observadores inerciales S y S' y un
suceso P que según S tiene unas coordenadas (t, x) y según
S' unas coordenadas (t', x'). Si el suceso es un punto en movi-
miento las velocidades atribuidas por S y S' son:

(29)

Si la velocidad de S' con relación a S es V, se deduce
inmediatamente de (19)

es decir

(30)

Notemos que si V « c entonces se obtiene la ley de suma
de velocidades de Galileo

v' = v + V (31)
Por otra parte, si v = (0, 0, c) y V = (0, 0, V) se obtiene

v' = (0, 0, c).
Si para simplificar suponemos que V = (V, 0, 0), entonces

(32)

Se pueden dar otras definiciones equivalentes a la veloci-
dad tales como w = dx / dτ, llamada celeridad, o la rapidez
que se puede definir como ϕ = c arctanh (v / c).

Simultaneidad, pasado y futuro

Sean dos sucesos que para S tienen coordenadas (t1, x1) y
(t2, x2). Veamos como ve estos sucesos el observador S'. De
(19) se deduce inmediatamente
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(33)

Supongamos que S ve los dos sucesos simultáneos, es
decir t2 = t1; de (33) resulta que en general los tiempos que
ve S' no son iguales y por tanto la simultaneidad es un con-
cepto relativo.

Supongamos que S ve los dos sucesos como t2 > t1. Para
que podamos asegurar que t2' > t1' cualquiera que sea V es
necesario que |x2 – x1| / [(t2 – t1) < c, es decir que los dos
sucesos se puedan relacionar con una señal física que viaje a
velocidad menor que la de la luz. Esto es evidente necesario
pues en este caso puede existir una relación causa efecto y
esto implica que t2' > t1'.

Evidentemente en todos estos casos y suponiendo que
V « c entonces t2' – t1' = t2 – t1 como era de esperar.

Contracción de longitudes y dilatación de tiempos
Supongamos un observador S y colocada según Ox una

varilla en reposo. Supondremos V = (V, 0, 0). En un instan-
te t mide la posición de los dos extremos de la varilla y
encuentra las coordenadas (t, x2) y (t, x1) y entonces conclu-
ye que su longitud es L0 = x2 – x1 > 0. ¿Qué longitud encuen-
tra el observador inercial S'? En un instante t' mide las coor-
denadas de los dos extremos y encuentra una longitud

(34)

Como de (19) se obtiene 

(35)

resulta inmediatamente que

(36)

Es decir que cualquier observador en movimiento verá la
varilla acortada.

Supongamos ahora que un reloj esta en reposo en S y que
medimos en el un intervalo de tiempo con coordenadas
(t2, x) y (t1, x) y por tanto el intervalo de tiempo entre los dos
sucesos es τ = t2 – t1 > 0, que es el llamado tiempo propio.
Para el observador S' y usando la ecuación (33) se obtiene
inmediatamente que T = t2' – t1' está relacionado con T0 por la
ecuación

(37)

y el observador S' mide siempre un intervalo de tiempo
mayor que el tiempo propio.

Como aplicación de ésta última expresión se puede tener
en cuenta que la radiación cósmica primaria produce unas
partículas llamadas µ– (muones) en la parte más alta de la
atmósfera, es decir, a unos 100 km de la superficie terrestre.
La vida media de esta partícula es del orden de τ= 2.2 × 10–6

segundos y supongamos que su velocidad inicial es tal que
(v / c)2 = .9999. Estos muones se observan frecuentemente en
la superficie terrestre y deseamos entender porque esto es
posible. Si se razona de acuerdo con la física clásica estas
partículas, que van prácticamente a la velocidad de la luz,
para recorrer los 100 km necesita un tiempo del orden de
t = 3.3 × 10–4 s. Si N0 es el número de muones inicialmente

producidos, entonces de acuerdo con la bien conocida ley de
desintegración exponencial N(t) = N0 exp (–t / τ), el número
de los que llegan a la superficie de la tierra es del orden de
N = 7.2 × 10–66 N0, y por tanto contra la evidencia experi-
mental no pueden llegar, prácticamente, muones a la super-
ficie terrestre. Veamos lo que sucede teniendo en cuenta los
efectos relativistas. Para el observador terrestre y de acuerdo
con (37) se obtiene que ve como si la vida media del muón
fuera T = 2.2 × 10–4 s por tanto usando la ley de desintegra-
ción exponencial N = 0.223 N0, es decir llegan a la superfi-
cie terrestre, aproximadamente, una cuarta parte de las partí-
culas producidas. Supongamos un observador solidario con
el muón; la distancia que debe recorrer de acuerdo con (36)
es 1 km y el tiempo que tardará en hacerlo es T = 3.3 × 10–6 s
y aplicando de nuevo la ley de desintegración exponencial se
encuentra de nuevo que N = 0.223 N0.

Paradojas
El ejemplo anterior es la solución a un tipo de paradojas

que propicia la Teoría de la Relatividad. La vida media de un
muón difiere en función del observador. Tal vez la paradoja
más célebre es la de los gemelos. Dos hermanos gemelos se
separan, uno se queda en la Tierra y el otro toma una nave
espacial y realiza un viaje interestelar a velocidades próxi-
mas a la de la luz. Tras el largo viaje, retorna a la Tierra y se
reencuentra con su hermano que para su sorpresa es mayor
que él. La paradoja surge al considerar que ambos hermanos
ven al otro alejarse y volver. Ambos deberían creer que el
otro es más joven. Pero esto no es así porque no existe tal
simetría. El hermano viajero tiene asociado un sistema no
inercial ya que sufre aceleraciones. Él es más joven.

Otra paradoja curiosa es la llamada paradoja de los cohe-
tes de Bell. Bell propuso considerar dos cohetes situados uno
encima de otro verticalmente y ligados por una cuerda tensa.
Ambos cohetes despegan simultáneamente en la dirección
vertical con la misma aceleración y, por lo tanto, siempre tie-
nen velocidades idénticas. La paradoja surge cuando los
cohetes toman velocidades altas y aparece el fenómeno de
contracción de Lorentz. ¿Se rompe la cuerda? Dejamos esta
segunda paradoja en manos del lector.  

Momento
Bajo las transformaciones de Lorentz xµ es un cuadrivec-

tor. Debemos trabajar siempre con cantidades tensoriales y
por tanto el momento de una partícula se debe definir como 

(38)

donde m es la masa de la partícula y τ el tiempo propio.
Recordando (37) se tiene que 

(39)

Entonces 

(40)

La componente 0 del cuadrivector momento es

(41)

La energía es pues 
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(42)

Desarrollando en potencias de (v / c) se encuentra

(43)
En este desarrollo el primer término corresponde a la

energía correspondiente a la masa en reposo de la partícula;
la famosa fórmula de Einstein. El segundo es la energía ciné-
tica clásica y los restantes son las correcciones relativistas a
la dicha energía y K es la llamada energía cinética relativista.

Algunas relaciones muy útiles son 

(44)

Notemos que para una partícula de masa nula, como los
fotones, la energía viene dada por

(45)

Se puede probar que la homogeneidad del espacio tiem-
po implica que en los procesos entre partículas elementales
el cuadrimomento inicial y final deben ser iguales.

Por ejemplo, consideremos una partícula de masa M que
está en reposo que se desintegra en dos partículas de masas
m1 y m2. Se desea saber cuál es la distribución final de
momentos y energías. Si la partícula 1 sale con un momento
p, entonces la conservación del trimomento implica que la
partícula 2 sale con momento –p. Por otra parte la conserva-
ción de la energía implica

(46)
de donde se deduce el valor del módulo de p, que resulta ser

(47)
De (46) se deduce que la desintegración sólo puede tener

lugar si M > m1 + m2. En el caso de un proceso en el que
intervengan N partículas se puede probar que la invariancia
bajo el grupo de Poincaré deja como únicas cantidades inde-
terminadas (3N – 10) parámetros, donde 10 es el número de
parámetros de dicho grupo. En el ejemplo que hemos analiza-
do tenemos N = 3 y por tanto toda la cinemática queda fijada.

La celebérrima ecuación de Einstein, E = mc2, cobró su
fama porque, entre otras consecuencias, implicaba la posibi-
lidad de transformar masa en radiación. Un ejemplo claro es
la aniquilación de un positrón y un eletrón en dos fotones, e+

e– → γ γ. Para leptones lentos colisionando en el centro de
masas, cada fotón debe llevarse .511 MeV respectivamente.
La masa del electrón se ha transformado en energía cinética
de un fotón. Desintegraciones nucleares dan lugares a foto-
nes aun más energéticos, rayos gamma. Las desintegraciones
de átomos inestables con liberación de grandes cantidades de
energía son ejemplos que traen el triste recuerdo de la bomba
atómica. Si bien la cinemática relativista se halla en la base
de la posibilidad de crear un arma nuclear, Einstein jamás
participó en la investigación asociada a su desarrollo. 

Leyes del movimiento
De acuerdo con lo dicho anteriormente debemos de algu-

na forma modificar las leyes fundamentales de la mecánica
Newtoniana [Isaac Newton (Woolsthorpe, Lincolnshire

1642, Londres -1727)]. Por analogía con la segunda ley de
Newton la relación entre la fuerza F y el cambio de momen-
to que ésta produce viene dada por  

(48)

donde se ha tenido en cuenta la ecuación (38). De aquí se
obtiene 

(49)

Evidentemente esta es la ecuación de la mecánica
Newtoniana en el límite v « c. De (49) se ve que la fuerza F
y la aceleración a = dv / dt no son paralelas como sucede en
el límite Newtoniano. Serán paralelas sólo si 

(50)

Notemos además que en este último caso v.dv / dt = 0 y
por tanto dv2 / dt = 0, lo cual implica que v2 = constante y
F · v = 0. 

Para conseguir una formulación covariante de la dinámi-
ca relativista es necesario introducir la cuadrifuerza que está
relacionada con el cuadrimomento mediante la ecuación

(51)

Puesto que dpµ es un cuadrivector, también lo es la cua-
drifuerza. De aquí se deduce que

(52)

La primera de estas ecuaciones no es más que la ecuación
(48) dada anteriormente y la segunda corresponde a la bien
conocida ecuación del cambio de la energía por efecto de la
fuerza aplicada, con los cambios pertinentes debidos a la
mecánica relativista.

Veamos cómo encontrar ahora la trayectoria de una partí-
cula de masa m sobre la que actúa una fuerza constante F. La
ecuación (48) se integra inmediatamente, obteniendo

(53)
Supondremos para simplificar que p(0) = 0 y entonces la

ecuación anterior se escribe

(54)

de donde se obtiene que

(55)

y a medida que aumenta t muy la velocidad de la partícula
crece pero nunca llega a alcanzar la velocidad de la luz. Una
nueva integración da la para la trayectoria la ecuación

(56)
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Ecuaciones del campo electromagnético
Las ecuaciones para el campo electromagnético que

habrían este artículo se adaptan inmediatamente a una nota-
ción relativista. No podía ser de otra forma ya que su estruc-
tura fue la responsable de entender el grupo de Poincaré. En
notación relativista, el campo electromagnético se describe
mediante un tensor antisimétrico de segundo orden con com-
ponentes 

(57)
Con lo que las dos primeras ecuaciones de Maxwell se

escriben

(58)
y las dos segundas, introduciendo el vector corriente 

(59)
pueden escribirse de forma compacta como

(60)
Para una partícula de carga Q en el seno de un campo

electromagnético la ecuación covariante equivalente a (51)
se escribe 

(61)
Si se considera un sistema de referencia inercial en el que

la partícula se halla en reposo entonces de (61) y (57) se
halla:

(62)
Por el contrario si en el sistema inercial la partícula está

en movimiento entonces se obtiene

(63)
que no es más que la fuerza de Lorentz.

Conclusión: postulados
Hemos introducido la Teoría de la Relatividad Especial

como la solución al problema de mantener una estructura

única tanto para las ecuaciones de la mecánica clásica como
para las del electromagnetismo. Esta idea da lugar a ecua-
ciones covariantes bajo el grupo de Poincaré, modificando
pues las ecuaciones de la mecánica Newtoniana. Einstein fue
más lejos y destiló qué ideas correspondían a nuevos princi-
pios y qué resultados eran deducibles. Para ello elevó a nivel
de postulado la independencia de la velocidad de la luz para
cualquier sistema de referencia inercial. Un segundo postu-
lado es necesario para establecer la covariancia poincaré de
las ecuaciones de la Física bajo cambios de sistemas de refe-
rencia inerciales. El resto de los resultados de la Teoría de la
Relatividad Especial se sigue de estos dos principios.

Einstein cuidó con esmero todos sus escritos para trans-
mitir la idea de que la Naturaleza nos presenta evidencias
experimentales de las cuáles debemos inferir principios. Su
forma de pensar halló su culminación en la Teoría de la
Relatividad General, donde el principio de covariancia se
extiende a sistemas no inerciales para así poder absorber la
presencia de un campo gravitatorio.  La construcción de un
principio de acción invariante bajo difeomorfismos del espa-
cio-tiempo se materializó en la acción de Hilbert-Einstein.
Sus posteriores esfuerzos para aumentar el grado de simetría
del espacio-tiempo y dar cabida a otras interacciones fra-
casó. Hoy en día se mantiene la separación entre las teorías
de campos que cuantizan correctamente las interacciones
fuertes, débiles y electromagnéticas y la Teoría de la
Relatividad General. Ésta última no ha logrado ser cuantiza-
da. La construcción de teorías con principios de simetría
muy elevados (teoría de cuerdas) se ha mostrado todavía
incapaz de reproducir la teoría de bajas energías que rige el
mundo en el que vivimos. No obstante, la impronta de
Einstein en el sentido de elevar simetrías a postulados está
siempre presente en los desarrollos fundamentales más
ambiciosos.
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