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Introduccioén

En el afio 1905, Albert Einstein (Ulm 1879 - Princeton,
New Jersey 1955) era un empleado en la oficina de patentes
de Berna. Fue en ese afio cuando publicé tres de sus trabajos
fundamentales en el efecto fotoeléctrico, en el movimiento
Browniano y la Teoria de la Relatividad Especial, cualquie-
ra de los cuales le habria hecho merecedor de un puesto en
la historia de la Fisica. Este articulo se centra en el Gltimo de
ellos que fue publicado en Annalen der Physik 17, 891
(1905). No intentaremos hacer una historia detallada de
cémo Einstein lleg6 a formular su teoria, ni como ésta se fue
desarrollando. El lector interesado en estos aspectos puede
consultar el magnifico libro de Abraham Pais {Amsterdam
1918 - Copenhague 2000} “Subtle is the Lord... The Science
and the Life of Albert Einstein” (Oxford University Press,
1982).

Einstein recibid el Premio Nobel de Fisica de 1921 “por
sus servicios a la Fisica Teorica, y especialmente por su des-
cubrimiento de la ley del efecto fotoeléctrico”. Pais opina
que en aquellos momentos todo el mundo era consciente de
la importancia del efecto fotoeléctrico y sus implicaciones en
los principios de la emergente Mecénica Cuéntica y, si bien
no habian dudas sobre la teoria de la Relatividad Especial, la
Relatividad General y su explicacion del campo gravitatorio
no eran todavia universalmente aceptadas. Independiente-
mente de la opinidn de sus colegas, Einstein dedicé su dis-
curso Nobel a la Teoria de la Relatividad.

En este breve articulo intentaremos dar una idea de los
puntos conceptuales y técnicos mas importantes de la Teoria
de la Relatividad Especial, sin prestar atencién a como ésta
se fue desarrollando y de como fue siendo aceptada por la
comunidad cientifica de la primera mitad del siglo XX. La
Teoria de la Relatividad puede entenderse como un conflic-
to entre la estructura de la vigente teoria de los campos elec-
tromagnéticos y el paradigma newtoniano. Las ecuaciones
del campo electromagnético contienen necesariamente las
limitaciones que impone una velocidad de propagacién fini-
ta. Einstein logro elevar a principio los elementos que sub-
yacen en esta estructura y adaptd la dindmica newtoniana a
su nuevo formalismo. Nuestro recorrido, pues, parte de la
teorfa clasica del campo electromagnético.

La teoria del campo electromagnético

James Clerk Maxwell (Edimburgo 1831 - Cambridge
1879) publico en 1873 su famoso libro “A Treatise on
Electricity and Magnetism” en el que establecia la teoria del
campo electromagnético. En notacion moderna, este campo
viene caracterizado por el vector campo eléctrico, E(t, X) y
el llamado induccién magnética, B(t, x), ambos funciones
del instante de tiempo y del punto del espacio considerado.
Si en el espacio existe una densidad de carga eléctrica p(t, x)
y una densidad de corriente eléctrica j(t, x), entonces E 'y B
vienen determinados por un conjunto de ecuaciones, conoci-
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das con el nombre de ecuaciones de Maxwell, que en el
vacio y en el sistema unidades de Gauss, se escriben:

VxE+(1/c)oB/ot=0
V-E=4np

V.-B=0
VxB—(1/c)0E /ot = (4 /C)
1)

La velocidad de la luz en el vacio esc =299 792 458 m s-1.
Hoy en dia, ¢ es una constante fijada por convenio y que,
consecuentemente, no podemos medir puesto que se utiliza
para definir el patron de distancia a partir del patrén de tiem-
po basado en el Cesio. Es interesante notar que hoy en dia la
precision del patrén de tiempo es inferior a la de ciertos
experimentos realizados en otros sistemas cuanticos. Tarde o
temprano, el patron Cesio debera ser abandonado pero la
velocidad de la luz seguira siendo una definicion.

La densidad de carga y de corriente eléctrica estan rela-
cionadas a través de la ecuacion de continuidad

V.j+dplot=0 @)

que implica la conservacion de carga total en un sistema fisico.

La ley de Coulomb entre dos particulas cargadas y la
fuerza sobre una particula en el seno de un campo electro-
magnético vienen dadas, respectivamente, por

F= (Qle / rs)r,

De aqui es facil probar a partir de (1) que en las zonas del
espacio en que la densidad de carga y de corriente eléctrica
son nulas se cumplen las ecuaciones

F=Q(E+vxBl/c) (3)

A/c*)d’Elot’ —°El ox* —0°El oy —0°E/ 6z =0
A/c*)o’Bl ot —o°Blox* —o°Bloy* —0°Bloz* =0

Estas son las ecuaciones que describen la propagacion de
las ondas electromagnéticas en el vacio. Se puede probar que
su velocidad de propagacion es c, basta tener en cuenta la
ecuacion unidimensional equivalente

(1/¢®) 0% A(t,x)/ ot —0°A(t, x)/ ox* =0 (5)

(4)

Introduzcamos ahora las variables n=x—cty § = x + ct
y con B(n, &) = A(t, X) la ecuacion (5) se transforma en

0*B(n,§)/05on=0 (6)
cuya solucion mas general es
A(t,x) =t(x—ct) + g(x +ct) @)

siendo f y g funciones arbitrarias cuya dependencia muestra
que c corresponde a la velocidad de propagacion de los cam-
pos.

Surge entonces la pregunta: ¢son estas ecuaciones validas
solo en algln sistema inercial privilegiado en el que la velo-
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cidad de la luz es c? Seria de esperar, de acuerdo con las
ideas clésicas, que si un observador se moviera siguiendo un
rayo de luz con velocidad v, viera para la luz la velocidad ¢ — v.

Una primera solucién que se propuso fue suponer que las
ecuaciones de Maxwell sélo son validas en un sistema iner-
cial ligado con el éter, que a finales del siglo XIX y princi-
pios del XX se creia llenaba todo el espacio. Por éstos tiem-
pos se hicieron mdaltiples experiencias para determinar nues-
tra velocidad con relacién al éter, siendo, probablemente, las
mas famosas las de Armand Hippolyte Louis Fizeau (Paris
1819 —Venteuil, Seine-et-Marne 1896) y las de Albert Abra-
ham Michelson (Strelno, Prusia 1852— Pasadena, California
1931) y colaboradores. Todas estas experiencias dieron
resultados nulos. Si bien ninguna de ellas es mencionada
explicitamente en los trabajos de Einstein, ya en el primero
de ellos hace referencia a los intentos fallidos de medir nues-
tra velocidad con relacion al éter. Sorprendentemente su tra-
bajo no tiene ni una sola referencia.

La Teoria de la Relatividad de Einstein eliminaria el sen-
tido del éter ya que eleva a postulado el hecho de que la velo-
cidad de la luz es la misma en cualquier sistema de referen-
cia inercial. Todo intento de medir un sistema de referencia
privilegiado es inatil. El éter murid sin haber nacido.

Desde un punto de vista matematico es necesario esta-
blecer que transformaciones dejan covariantes a las ecuacio-
nes de Maxwell. Entender esta simetria es el paso previo a
extenderla a toda la fisica clasica. ElI razonamiento de
Einstein es admirable. Las ecuaciones de Maxwell describen
correctamente todos los fenémenos electromagnéticos y
estdn asociados a velocidades luminicas. En cambio, las
ecuaciones de Newton no se adaptan al mismo esquema. Si
entendemos el grupo de transformaciones que rigen el cam-
bio de sistema de referencia en el electromagnetismo y ele-
vamos a principio la covariancia de las ecuaciones dinami-
cas de todo sistema bajo ese grupo, dispondremos de la
herramienta necesaria para extender la fisica clasica. El
grupo de simetria lleva el nombre de Poincaré.

El grupo de Poincareé

El llamado grupo de Poincaré [Henri Poincaré (Nancy
1854 - Paris 1912)] se define hoy dia como el conjunto de
aquellas transformaciones lineales reales e inhomogeéneas:

{a,A}:  X—>Ax+a, (X" =>AlX" +a") (8)
(empleamos los indices griegos de 0 a 3 y los latinos de 1 a
3; también emplearemos ocasionalmente la notacion x0 = c t,
xt =X, X2 =y, x3 =2) que dejan invariante la distancia
Minkowskiana [Rudolf Minkowski (Estrasburgo 1895 - Ber-
keley, California 1976)]

ds? =g, dx“dx" = dx' G dx 9)
donde dx indica la matriz columna de elementos (dx?, dxi,
dx2, dx3), dxT su traspuesta y G es la matriz cuatro por cuatro
(o métrica de Minkowski) de elementos

Guv =0 si u=v, Gy=+1 G, =G, =0Cgz;; =-1 (10)
Por lo tanto, una transformacién es de Poincaré si y s6lo si
ATGA=G (11)

a*=a, A*=A,
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donde el asterisco indica tomar el complejo conjugado. De la
Gltima de estas relaciones se deduce que (det A)2 =1y, por
lo tanto

detA =+1 (12)

lo que asegura que las transformaciones consideradas tienen
inversa. Ademas, tomando la inversa de (11) se obtiene (A-2)
G(A-1)T = G y de esta relacion resulta

AGA" =G (13)
De (8) se deduce
{a, A Ha,, A y={a, +Aa,, AA,}
@Ay = AT AT (14)

Con estas propiedades es inmediato probar que las trans-
formaciones de Poincaré forman un semigrupo.

Una propiedad importante que se deduce facilmente de (13)
es A, Ay =g,y si hacemos u = v = 0 se tiene Ay, Aj =1, esto
es (AD)? - (A)? = 1 de donde

0 2
Ay) 21 (15)

Trasformaciones particularmente importantes son las

rotaciones caracterizadas por:

X" =[R(n,0)] x" (16)

con
t'=t
X' =x—(1-cos0)(n-x)n+(xxn)sino 17)

donde n es un vector unitario y ésta transformacion no es
mas que una rotacion de angulo 6 alrededor del eje n. Estas
transformaciones forman el grupo de las rotaciones.

Otras transformaciones particularmente importantes son
las llamadas transformaciones de Lorentz [Hendrik Antoon
Lorentz (Arnhem, Holanda 1853 - Haarlem, Holanda 1928)],
que vienen dadas por

X" =[BMW)] x" (18)

con
t=(t+v-x/c?)/d-(Ic)y

X' =X+ é/(l—(v/c)z)m—1jv-x)v/v2+vt/(l—(v/c)2)1/2

(19)

Estas transformaciones no constituyen un grupo. Sin

embargo si v, y v, son paralelas entonces:

B(v,)B(v,) = B((V1+V2)/(1+V1!V2/C2)) (20)

Es decir que las transformaciones de Lorentz para velo-
cidades en una misma direccién forman un grupo. En parti-

cular
B(v)B(-v)=1 (21)

Hemos mencionado las rotaciones y las transformaciones
de Lorentz porque se puede probar que cualquier transfor-
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macion de Poincaré homogénea (a=0) condet A=+ 1y
(A9) > 1 se puede escribir de forma tnica como

A=B(V)R(n,0)=R(n",6")B(V") (22)

La isotropia del espacio nos garantiza la invariancia bajo
rotaciones y por tanto a partir de este momento solo se ten-
dremos en cuenta las transformaciones de Lorentz.

Una forma simple de deducir las transformaciones de
Lorentz es la siguiente. Supongamos que en el instante t = 0
se emite desde el origen de un sistema de coordenadas (O, X,
Yy, ) una sefial luminosa. Un observador inercial S, solidario
con este sistema de referencia, vera que en un cierto instan-
te t los puntos alcanzados por el frente de ondas son aquellos
que cumplen

x> +y? +12° = (ct)’ (23)

Consideremos ahora un segundo observador inercial S'
tal que en t = 0, los origenes de sus sistemas de referencia
coincidan O = O'y que (O', X', y', z') y que se mueve con
relacion al primer sistema de referencia con una velocidad v
paralela al eje Ox. La constancia de la velocidad de la luz en
todos los sistemas inerciales obliga a que S' vera que los
frentes de ondas deben satisfacer la ecuacion

X2 +y? +7% = (ct')? (24)

¢Qué relacion hay entre las coordenadas medidas por
ambos observadores? Si exigimos que, de acuerdo a la
homogeneidad del tiempo y del espacio, las coordenadas
usadas por S' estén relacionadas linealmente con las usadas
por S entonces se encuentra que

t' = AWV)(t+vx/c?) A= (v/c)y -
X' = A(v) (x+vt)/ d- (v/c)z)ll2 LY =ANV)Y, 2 = A(V) 2z

Como el producto de esta transformacion y su inversa
debe dar la identidad entonces

A(V) A(~v) =1 (26)

La simetria exige que las transformaciones de las coor-
denadas y y z no cambien si cambiamos v por —v y por tanto
A(v) =1 con lo que las transformaciones (25) se convierten
en

t'=(t+wx/c?)/ d—(v/c)?)
2 (27)
X'=(x+vt)/d-(v/c)*y , y'=y, 7=z

gue no son mas que un caso particular de (19), que se obtie-
ne haciendo v = (v, 0, 0).

Notemos que, si v « ¢, las transformaciones de Lorentz se
convierten en las transformaciones de Galileo [Galilei
Galileo (Pisa 1564 - Arcetri, cerca de Florencia 1642)]

t'=t, X'=x+wt (28)

que son las que conectan dos sistemas inerciales en el marco
de la mecanica clasica no relativista.

Es evidente que las ecuaciones (4) no mantienen su forma
bajo las transformaciones de Galileo. ¢La mantienen bajo las
transformaciones de Lorentz? La contestacion afirmativa a
esta pregunta es anterior al trabajo de Einstein, pues en 1887
Woldemar Voigt (Leipzig 1850 - Gotinga 1919) se dio cuen-
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ta que las ecuaciones (4) mantenian su forma bajo la trans-
formacion (21) con A(v) = (1 — (v/c)2)¥2, El resultado es ver-
daderamente importante pero paso desapercibido y el mismo
Lorentz asi lo reconocié en 1906 en unas conferencias que
dio en la Columbia University. Evidentemente si los siste-
mas inerciales estaban relacionados por las transformaciones
de Lorentz entonces las ecuaciones de Maxwell son validas
en todos los sistemas inerciales, las experiencias de tipo
Michelson y similares dan forzosamente resultados nulos y
no hay mas remedio que revisar la mecénica clasica. Este
debio ser el razonamiento de Einstein.

Cinematica relativista

Antes de analizar como debe modificarse la mecanica
clasica, nos detenemos a considerar algunas consecuencias
de las transformaciones de Lorentz.

Composicion de velocidades

Supongamos dos observadores inerciales S 'y S' y un
suceso P que segun S tiene unas coordenadas (t, x) y segun
S" unas coordenadas (t', x). Si el suceso es un punto en movi-
miento las velocidades atribuidas por Sy S' son:

v=dx/dt, v =dx'/dt’ (29)
Si la velocidad de S' con relacién a S es V, se deduce
inmediatamente de (19)
v':dx'/dt':[(1—(\//c)z)“zl(duv.dx/cz)J
[dx +@QIA— (VISP =1y (V- dX)V/VZ +Vdt/1—(V /c)z)“?]
es decir
v’:[(l—(\/ Ieyy” /(1+v-v/c2)}
[v+(1/(1—(v J6)2 )2 —1y(V - V) VIV + V(L - (V /c)z)“ﬂ
(30)

Notemos que si V « ¢ entonces se obtiene la ley de suma
de velocidades de Galileo
Vi=v+V (31)
Por otra parte, siv=(0,0,c)y V = (0, 0, V) se obtiene
v'=(0,0,c).
Si para simplificar suponemos que V = (V, 0, 0), entonces

V. =(v, +V)/L+Vv,/c?),
v, =v, (1= (V /c)*)"? 1A+ Vv, /c?),
V=V, (L (V1)) 1L+ V v, [ cP). (32)

Se pueden dar otras definiciones equivalentes a la veloci-
dad tales como w = dx/ dt, llamada celeridad, o la rapidez
que se puede definir como ¢ =c arctanh (v/c).

Simultaneidad, pasado y futuro

Sean dos sucesos que para S tienen coordenadas (t;, X;) ¥
(t,, X5). Veamos como ve estos sucesos el observador S'. De
(19) se deduce inmediatamente
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t -t =[(t, ~t)+ V- (6, =) /c” |/[1/A-(V /c)*)"* ] (33)

Supongamos que S ve los dos sucesos simultaneos, es
decir t, = t;; de (33) resulta que en general los tiempos que
ve S' no son iguales y por tanto la simultaneidad es un con-
cepto relativo.

Supongamos que S ve los dos sucesos como t, > t;. Para
que podamos asegurar que t, > t; cualquiera que sea V es
necesario que |x, — X, / [(t, — t;) < ¢, es decir que los dos
sucesos se puedan relacionar con una sefial fisica que viaje a
velocidad menor que la de la luz. Esto es evidente necesario
pues en este caso puede existir una relacion causa efecto y
esto implica que t; > t;.

Evidentemente en todos estos casos y suponiendo que
V « ¢ entonces t; —t; = t, — t; como era de esperar.

Contraccion de longitudes y dilatacion de tiempos

Supongamos un observador S y colocada segin Ox una
varilla en reposo. Supondremos V = (V, 0, 0). En un instan-
te t mide la posicién de los dos extremos de la varilla y
encuentra las coordenadas (t, x,) y (t, X;) y entonces conclu-
ye que su longitud es L, = x, — %; > 0. ; Qué longitud encuen-
tra el observador inercial S'? En un instante t' mide las coor-
denadas de los dos extremos y encuentra una longitud

L =x;(t") = x5 (t) (34)
Como de (19) se obtiene
X, =[x (1) ~VE]/A— (V [0)*)"?,
X =[xq(t) -Vt(@L-(V /c)*)"? (35)
resulta inmediatamente que
L=L,(-(V/c)")" (36)

Es decir que cualquier observador en movimiento vera la
varilla acortada.

Supongamos ahora que un reloj esta en reposo enS'y que
medimos en el un intervalo de tiempo con coordenadas
(t,, X) y (5, X) y por tanto el intervalo de tiempo entre los dos
sucesos es Tt =t, — t; > 0, que es el llamado tiempo propio.
Para el observador S' y usando la ecuacién (33) se obtiene
inmediatamente que T = t, — t; esta relacionado con T, por la
ecuacion

T =7/0-(V/c)?)"? @37)

y el observador S' mide siempre un intervalo de tiempo
mayor que el tiempo propio.

Como aplicacion de ésta Ultima expresion se puede tener
en cuenta que la radiacion cdsmica primaria produce unas
particulas llamadas p- (muones) en la parte mas alta de la
atmosfera, es decir, a unos 100 km de la superficie terrestre.
La vida media de esta particula es del orden de t=2.2 x 10-6
segundos y supongamos que su velocidad inicial es tal que
(v/c)2=.9999. Estos muones se observan frecuentemente en
la superficie terrestre y deseamos entender porque esto es
posible. Si se razona de acuerdo con la fisica clasica estas
particulas, que van practicamente a la velocidad de la luz,
para recorrer los 100 km necesita un tiempo del orden de
t = 3.3 x 104 s. Si N, es el nimero de muones inicialmente
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producidos, entonces de acuerdo con la bien conocida ley de
desintegracion exponencial N(t) = Ny exp (-t/ 1), el nimero
de los que llegan a la superficie de la tierra es del orden de
N = 7.2 x 10-66 N, y por tanto contra la evidencia experi-
mental no pueden llegar, practicamente, muones a la super-
ficie terrestre. Veamos lo que sucede teniendo en cuenta los
efectos relativistas. Para el observador terrestre y de acuerdo
con (37) se obtiene que ve como si la vida media del muén
fuera T = 2.2 x 104 s por tanto usando la ley de desintegra-
cion exponencial N = 0.223 N,, es decir llegan a la superfi-
cie terrestre, aproximadamente, una cuarta parte de las parti-
culas producidas. Supongamos un observador solidario con
el mudn; la distancia que debe recorrer de acuerdo con (36)
es 1 kmy el tiempo que tardard en hacerloes T=3.3 x 10-6 s
y aplicando de nuevo la ley de desintegracién exponencial se
encuentra de nuevo que N = 0.223 N,.

Paradojas

El ejemplo anterior es la solucion a un tipo de paradojas
que propicia la Teoria de la Relatividad. La vida media de un
muon difiere en funcion del observador. Tal vez la paradoja
maés célebre es la de los gemelos. Dos hermanos gemelos se
separan, uno se queda en la Tierra y el otro toma una nave
espacial y realiza un viaje interestelar a velocidades proxi-
mas a la de la luz. Tras el largo viaje, retorna a la Tierra y se
reencuentra con su hermano que para su sorpresa es mayor
que él. La paradoja surge al considerar que ambos hermanos
ven al otro alejarse y volver. Ambos deberian creer que el
otro es mas joven. Pero esto no es asi porque no existe tal
simetria. El hermano viajero tiene asociado un sistema no
inercial ya que sufre aceleraciones. EI es mas joven.

Otra paradoja curiosa es la llamada paradoja de los cohe-
tes de Bell. Bell propuso considerar dos cohetes situados uno
encima de otro verticalmente y ligados por una cuerda tensa.
Ambos cohetes despegan simultdneamente en la direccion
vertical con la misma aceleracion y, por lo tanto, siempre tie-
nen velocidades idénticas. La paradoja surge cuando los
cohetes toman velocidades altas y aparece el fenémeno de
contraccion de Lorentz. ;Se rompe la cuerda? Dejamos esta
segunda paradoja en manos del lector.

Momento

Bajo las transformaciones de Lorentz x« es un cuadrivec-
tor. Debemos trabajar siempre con cantidades tensoriales y
por tanto el momento de una particula se debe definir como

(38)

donde m es la masa de la particula y t el tiempo propio.
Recordando (37) se tiene que

p* =mdx* /dz

cdr=cdt(l-(v/c)*)"? (39)
Entonces
p=mdx/dr =mv/(1—(v/c)*)"? (40)
La componente O del cuadrivector momento es
p’ =mdx’/dr=mc/(l—(v/c)?)"*=E/c (41)

La energia es pues
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E=mc®/(1-(v/c)*)"? (42)

Desarrollando en potencias de (v/c) se encuentra
E=mc’ +mv?/2+3mv*/8c® +5mv°®/16¢* +---=mc® + K
(43)

En este desarrollo el primer término corresponde a la
energia correspondiente a la masa en reposo de la particula;
la famosa férmula de Einstein. El segundo es la energia ciné-
tica clasica y los restantes son las correcciones relativistas a
la dicha energia y K es la llamada energia cinética relativista.

Algunas relaciones muy utiles son

p* =(E/c,p), (44)

Notemos que para una particula de masa nula, como los
fotones, la energia viene dada por

pll pu — mZC4, E — (m204 + C2p2)l/2

E=c|p| si m=0 (45)

Se puede probar que la homogeneidad del espacio tiem-
po implica que en los procesos entre particulas elementales
el cuadrimomento inicial y final deben ser iguales.

Por ejemplo, consideremos una particula de masa M que
estd en reposo que se desintegra en dos particulas de masas
m; y m,. Se desea saber cudl es la distribucion final de
momentos y energias. Si la particula 1 sale con un momento
p, entonces la conservacion del trimomento implica que la
particula 2 sale con momento —p. Por otra parte la conserva-
cién de la energia implica

1/2 1/2

Mc? = (m’c* +c’p?)"? + (mic* +c’p?) (46)

de donde se deduce el valor del médulo de p, que resulta ser
p=(*/2M)(M* +m + m; —2M’m? — 2M°m2 - 2m’mZ)""?
(47)

De (46) se deduce que la desintegracion sélo puede tener
lugar si M > m; + m,. En el caso de un proceso en el que
intervengan N particulas se puede probar que la invariancia
bajo el grupo de Poincaré deja como Unicas cantidades inde-
terminadas (3N — 10) parametros, donde 10 es el nimero de
parametros de dicho grupo. En el ejemplo que hemos analiza-
do tenemos N = 3y por tanto toda la cinematica queda fijada.

La celebérrima ecuacion de Einstein, E = mc2, cobré su
fama porque, entre otras consecuencias, implicaba la posibi-
lidad de transformar masa en radiacion. Un ejemplo claro es
la aniquilacion de un positrén y un eletrdn en dos fotones, e+
e- — v v. Para leptones lentos colisionando en el centro de
masas, cada fotdn debe llevarse .511 MeV respectivamente.
La masa del electrdn se ha transformado en energia cinética
de un fotén. Desintegraciones nucleares dan lugares a foto-
nes aun mas energéticos, rayos gamma. Las desintegraciones
de atomos inestables con liberacidn de grandes cantidades de
energia son ejemplos que traen el triste recuerdo de la bomba
atémica. Si bien la cinemética relativista se halla en la base
de la posibilidad de crear un arma nuclear, Einstein jamas
participé en la investigacion asociada a su desarrollo.

Leyes del movimiento

De acuerdo con lo dicho anteriormente debemos de algu-
na forma modificar las leyes fundamentales de la mecanica
Newtoniana [Isaac Newton (Woolsthorpe, Lincolnshire
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1642, Londres -1727)]. Por analogia con la segunda ley de
Newton la relacion entre la fuerza F y el cambio de momen-
to que ésta produce viene dada por

F=dp/dt=dmv/d-(v/c)?)"*ydt (48)

donde se ha tenido en cuenta la ecuacion (38). De aqui se
obtiene

F=[m/(-(v/c)’)" Jav/dt +

(49)
+[m/e?@=(v/c)’)* |(v-dv/dt)v

Evidentemente esta es la ecuacion de la mecénica
Newtoniana en el limite v « c. De (49) se ve que la fuerza F
y la aceleracién a = dv/dt no son paralelas como sucede en
el limite Newtoniano. Seran paralelas s6lo si

vlldv/dt encuyocaso F=[m/(1-(v/c)*)** [dv/dt
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v_Ldv/dt encuyocaso F:[m/(l—(v/c)z)“z]dv/dt( )

Notemos ademas que en este Gltimo caso v.dv/dt=0y
por tanto dv2/dt=0, lo cual implica que v2 = constante y
F-v=0.

Para conseguir una formulacion covariante de la dindmi-
ca relativista es necesario introducir la cuadrifuerza que esta
relacionada con el cuadrimomento mediante la ecuacién

f* =dp*/dr (51)

Puesto que dp+ es un cuadrivector, también lo es la cua-
drifuerza. De aqui se deduce que

f=dp/dr=[1/(L-(v/c)*)"* |dp/dt =F /(- (v/c)’)"* (52)
£ =dp°/dr =[1/(1— (v/c)*)"* Jd(E/c)/dt =
=[1/c@-(v/c)*)"* Jd(m’c* +c?p?)? /dt =

=[c/(-(v/c))" |[1/(m?c* +c’p?)* |p-dp/dt =

=v-F/c(l—(v/c)*)"?

La primera de estas ecuaciones no es mas que la ecuacion
(48) dada anteriormente y la segunda corresponde a la bien
conocida ecuacion del cambio de la energia por efecto de la
fuerza aplicada, con los cambios pertinentes debidos a la
mecénica relativista.

Veamos como encontrar ahora la trayectoria de una parti-
cula de masa m sobre la que actla una fuerza constante F. La
ecuacion (48) se integra inmediatamente, obteniendo

p(t) =p(0) + Ft (53)

Supondremos para simplificar que p(0) = 0 y entonces la
ecuacion anterior se escribe

mv(t) /(L - (v(t)/c)*)"? =Ft (54)
de donde se obtiene que
v(t)=ctF/[t?F? + m?c’T"? (55)

y a medida que aumenta t muy la velocidad de la particula
crece pero nunca llega a alcanzar la velocidad de la luz. Una
nueva integracion da la para la trayectoria la ecuacion

X(t) =x(0) + cF[t’F? + m*c*]"? /F? —mc* F/ F*  (56)
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Ecuaciones del campo electromagnético

Las ecuaciones para el campo electromagnético que
habrian este articulo se adaptan inmediatamente a una nota-
cion relativista. No podia ser de otra forma ya que su estruc-
tura fue la responsable de entender el grupo de Poincaré. En
notacidn relativista, el campo electromagnético se describe
mediante un tensor antisimétrico de segundo orden con com-
ponentes

F* =E,, F? =B F* =B, (57)

Con lo que las dos primeras ecuaciones de Maxwell se
escriben

F®=B

31 e

O*F* +0"F* +0'F* =0 (58)
y las dos segundas, introduciendo el vector corriente
J, =(cp.j), (59)
pueden escribirse de forma compacta como
0,F™* =(4r/c)J* (60)

Para una particula de carga Q en el seno de un campo
electromagnético la ecuacion covariante equivalente a (51)
se escribe

dp*/dz =(Q/c)F*dx, /dr (61)
Si se considera un sistema de referencia inercial en el que

la particula se halla en reposo entonces de (61) y (57) se
halla:

dp/dt = QE (62)

Por el contrario si en el sistema inercial la particula esta
en movimiento entonces se obtiene

dp/dt=Q(E +vxB/c)

que no es mas que la fuerza de Lorentz.

(63)

Conclusion: postulados

Hemos introducido la Teoria de la Relatividad Especial
como la solucion al problema de mantener una estructura

9

Unica tanto para las ecuaciones de la mecanica clasica como
para las del electromagnetismo. Esta idea da lugar a ecua-
ciones covariantes bajo el grupo de Poincaré, modificando
pues las ecuaciones de la mecanica Newtoniana. Einstein fue
mas lejos y destilo qué ideas correspondian a nuevos princi-
pios y qué resultados eran deducibles. Para ello elevo a nivel
de postulado la independencia de la velocidad de la luz para
cualquier sistema de referencia inercial. Un segundo postu-
lado es necesario para establecer la covariancia poincaré de
las ecuaciones de la Fisica bajo cambios de sistemas de refe-
rencia inerciales. El resto de los resultados de la Teoria de la
Relatividad Especial se sigue de estos dos principios.

Einstein cuidé con esmero todos sus escritos para trans-
mitir la idea de que la Naturaleza nos presenta evidencias
experimentales de las cuales debemos inferir principios. Su
forma de pensar hallé su culminacién en la Teoria de la
Relatividad General, donde el principio de covariancia se
extiende a sistemas no inerciales para asi poder absorber la
presencia de un campo gravitatorio. La construccién de un
principio de accidn invariante bajo difeomorfismos del espa-
cio-tiempo se materializ6 en la accién de Hilbert-Einstein.
Sus posteriores esfuerzos para aumentar el grado de simetria
del espacio-tiempo y dar cabida a otras interacciones fra-
cas6. Hoy en dia se mantiene la separacion entre las teorias
de campos que cuantizan correctamente las interacciones
fuertes, débiles y electromagnéticas y la Teoria de la
Relatividad General. Esta Gltima no ha logrado ser cuantiza-
da. La construccion de teorias con principios de simetria
muy elevados (teoria de cuerdas) se ha mostrado todavia
incapaz de reproducir la teoria de bajas energias que rige el
mundo en el que vivimos. No obstante, la impronta de
Einstein en el sentido de elevar simetrias a postulados esta
siempre presente en los desarrollos fundamentales mas
ambiciosos.
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