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1. Introduccion

La Geometria fue la primera rama de las Matematicas en
recibir una formulacion sistematica hace mas de dos mil
afnos. En “Los Elementos” de Euclides, escrito alrededor del
aflo 300 antes de nuestra era y unos de los libros mas influ-
yentes en la historia de la Humanidad, se obtienen los prin-
cipales teoremas de la geometria plana a partir de cinco pos-
tulados. Aunque el trabajo de Euclides domin6 la Geometria
durante siglos, fueron numerosos los matematicos desde
Ptolomeo a Legendre que intentaron demostrar que el quin-
to y ultimo de los postulados introducidos por Euclides!
podia o bien deducirse de los otros cuatro postulados eucli-
dianos o reducirse a una proposicion mas “simple”. Sélo en
el siglo XIX los matematicos Carl Friedrich Gauss, Nikolai
Lobachevski y Janos Bolyai se dieron cuenta, independien-
temente, de que el famoso quinto postulado no sélo era inde-
pendiente de los cuatro restantes sino que podia relajarse
para dar lugar a geometrias no euclidianas perfectamente
autoconsistentes. Estas nuevas geometrias fueron generali-
zadas poco después por Bernhard Riemann a un niimero
arbitrario de dimensiones, inaugurando asi toda una nueva
rama de las Matematicas.

El objetivo de este articulo es mostrar al lector como a
través del trabajo de Einstein las geometrias no euclidianas,
que en sus origenes podian parecer exentas de toda relevan-
cia fisica, se convirtieron en uno de los cimientos sobre los
que descansa nuestro conocimiento del Universo y la gravi-
tacion. Para ello, en lugar de presentar disquisiciones erudi-
tas sobre los desarrollos que la teoria de la relatividad ha
generado e inspirado en el campo de la Geometria del siglo
XX (que han sido muchos), nos gustaria discutir de la forma
mas accesible posible cuales fueron las ideas con las que
Einstein convirtié a la geometria no euclidiana en un len-
guaje natural para la Fisica.

2. La geometria del espacio-tiempo

La geometria ha influido muy poderosamente el desarro-
llo de las Ciencias Fisicas, no solamente en la antigiiedad
sino durante todo el proceso que culmin6 con la creacion de
la Fisica como ciencia experimental en el siglo XVII. Esta
influencia se manifestd fundamentalmente en el uso de la
geometria como herramienta de analisis de los procesos fisi-
cos, una de las razones por las cuales el lector contempora-
neo encuentra dificil la lectura de libros como los Principia
newtonianos. Son mads raros, sin embargo, los intentos de
“geometrizar” la Fisica, es decir, reducir las leyes fisicas a
propiedades geométricas del espacio.

Quizas el mas célebre intento en este sentido fue el plan
de Johannes Kepler de desentrafiar el “Misterio del Univer-

s0” explicando los tamafios de las drbitas planetarias en tér-
minos puramente geométricos. Aunque hoy sabemos que los
tamafios de las Orbitas en el Sistema Solar tienen los valores
que tienen por razones puramente “historicas”, el programa
kepleriano dio como resultado las tres leyes del movimiento
planetario, uno de los pies del gigante a cuyos hombros
Newton fue capaz de atisbar mas lejos que nadie antes que ¢él.

Tuvieron que pasar no obstante 300 afios desde el inten-
to de Kepler para que la geometrizacion de la Fisica viniera
de la mano de la teoria de la relatividad einsteiniana. A pesar
de la fascinacion infantil de Einstein con la geometria [1] no
fue €l quien dio el primer paso. En su celebérrimo articulo de
junio de 1905 [2] la relatividad es presentada de manera fisi-
ca a travé s de relojes y reglas. Fue el matematico suizo
Hermann Minkowski quién en 1908 se dio cuenta de que las
transformaciones entre los diferentes sistemas de referencia
inerciales se podian entender geométricamente como ciertos
cambios de coordenadas en el “espacio-tiempo”, un hiperes-
pacio de cuatro dimensiones en las tres de ellas se identifi-
can con las dimensiones espaciales habituales mientras que
la cuarta corresponde al tiempo.

La clave de la geometria no euclidiana es el hecho de que
en un entorno suficientemente pequeiio de ada punto la geo-
metria es muy aproximadamente euclidiana. En particular
las distancias pueden calcularse directamente utilizando el
teorema de Pitagoras. Entre dos puntos cercanos Py Q cuya
diferencia de coordenadas es Ax y Ay, la distancia viene dada
por (ver figura 1)

AP = Ax* + Ay (1)

De esta forma la geometria local en el plano no euclideo
siempre esta dada por la ecuacion anterior. Esta idea condu-
jo a la fecunda nocién de variedad riemanniana, cuyo desa-
rrollo ha tenido un impacto notable en la historia de las
matematicas.
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Figura 1. Ilustracion del teorema de Pitagoras.

IEl quinto postulado de Euclides es equivalente al llamado postulado de Playfair que afirma que en el plano, dado una linea recta y un punto externo a

ella existe una sola recta paralela a la primera y que pase por dicho punto.
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Cuando hablamos aqui de geometrias no euclidianas nos
estamos refiriendo en todo momento al espacio. El tiempo en
la fisica clasica, asi como en matematicas, es siempre un
espectador inmutable que juega el papel de un parametro
externo. Esto es particularmente obvio cuando consideramos
el principio de la relatividad formulado por Galileo y que
jugd un papel fundamental tanto en la mecanica de Newton
como en su extension llevada a cabo por Einstein.

El principio de relatividad galileano supone la existencia
de un conjunto infinito de sistemas de referencia inerciales
(esto es, sistemas de referencia en los que se satisface la ley
de inercia) y que necesariamente se mueven unos con res-
pecto a los otros con velocidad constante. Este principio afir-
ma que las leyes de la mecénica toman la misma forma en
todos los sistemas inerciales.

El principio de la relatividad de Galileo se puede enten-
der también como un principio de invariancia. El paso de la
descripcidn en un sistema de referencia inercial a otro se rea-
liza a través de ciertas transformaciones que relacionan las
coordenadas y el tiempo en ambos sistemas, las llamadas
transformaciones de Galileo. El principio de relatividad gali-
leano se enuncia entonces diciendo que las leyes de la meca-
nica son invariantes en forma frente a dichas transformacio-
nes. En particular, en la relatividad galileana el tiempo no
cambia al pasar de un sistema de referencia inercial a otro
mas alla del cambio producido por una diferente eleccion en
el origen de tiempos: los relojes de dos observadores iner-
ciales no tienen por qué marcar la misma hora, pero si
mediran el mismo intervalo temporal transcurrido entre dos
sucesos.

Este es quizas el punto mas importante donde la relativi-
dad einsteiniana se separa de y extiende a la galileana. El
principio de la relatividad de Einstein se basa en dos postu-
lados fundamentales:

e Todas las leyes de la fisica toman la misma forma en
cualquier sistema de referencia inercial.

e La velocidad de la luz es independiente de la velocidad
relativa del observador y la fuente.

Es decir, no solo las leyes de la mecénica sino todas la
leyes de la fisica, y en particular las del electromagnetismo,
tienen que ser invariantes bajo las transformaciones que rela-
cionan coordenadas y tiempo en dos sistemas de referencia
inerciales. Ademas, la velocidad de la luz emitida por una
fuente que medirian diferentes observadores inerciales ha de
ser siempre la misma (unos 300.000 km s-1).

Si intentamos obtener las transformaciones de coordena-
das que relacionan a dos observadores inerciales respetando
la constancia de la velocidad de la luz nos encontramos con
que el tiempo deja de ser inerte y participa de la cinematica
y la dindmica. Esta propiedad de la Teoria Especial de la
Relatividad (que la relatividad general lleva a sus ultimas
consecuencias) obliga a abandonar no solamente la idea de
que el espacio y tiempo son estructuras independientes, sino
también el que la geometria del continuo espacio-temporal
es euclidiana. Esto tuvo consecuencias espectaculares sobre
la estructura del universo.

Temas de Fisica

Vamos a analizar con cierto detalle las consecuencias de
estos dos postulados. Para simplificar la visualizacion
geométrica consideraremos un mundo en el que nos olvida-
mos de una de las coordenadas espaciales. Es decir, los pun-
tos de nuestro espacio-tiempo en lugar de venir etiquetados
por cuatro coordenadas (¢, x, , z), tres espaciales y una tem-
poral, vendran descritos solo por tres coordenadas (¢, x, ).
Esta simplificacién no presenta ninglin problema porque a
fin de cuentas lo que queremos ilustrar es como la geometria
cambia cuando tenemos en cuenta el tiempo. Asi, en los dia-
gramas que apareceran a continuacion la coordenada vertical
representara el tiempo y no la distancia espacial al plano x—y.
Asimismo, y ésto requiere un esfuerzo adicional, al hacer los
dibujos vamos a medir el tiempo en unidades de longitud.
Dado que la velocidad de la luz es la misma para todos los
observadores inerciales podemos utilizar como unidad de
tiempo el intervalo temporal necesario para que la luz reco-
rra una determinada distancia, digamos un centimetro. Esta
unidad de tiempo es igual a (1 cm)/(3x 1019 cms1) = 3.3 x
10-11 s, jesto es, unas tres cienmilmillonésimas de segundo!
Esto no es una complicacion gratuita. La razon para utilizar
estas unidades de tiempo es que al hacerlo la escala en el eje
t esta en relacion 1:1 con la escala en los ejes x e y. Si hubie-
ramos mantenido las unidades ordinarias (por ejemplo tiem-
po en segundos y distancias en centimetros) los diagramas
que obtendriamos serian bastante poco ilustrativos2.

Esta eleccion de unidad de tiempo es equivalente a esco-
ger un sistema de unidades en que la velocidad de la luz
toma el valor ¢ =1. A pesar de esto en las formulas seguire-
mos manteniendo la presencia explicita de la velocidad de la
luz como c. Fijadas pués las unidades a utilizar podemos
continuar con el estudio de la geometria del espacio-tiempo.
Imaginemos que nos encontramos en el centro de nuestro
sistema de coordenadas x =0, y=0 en el instante t=0 y
encendemos una bombilla. La luz formara un frente de onda
circular (esférico, si estuviesemos en un espacio con tres
dimensiones espaciales) que se alejara radialmente en todas
direcciones a la velocidad de la luz. Transcurrido un tiempo
t desde que hemos encendido la bombilla el radio del frente
de ondas sera ct y cualquier punto sobre dicho frente con
coordenadas espaciales (x, y) satisfara la ecuacion

P =x"+y7 )

Esta ecuacion la podemos visualizar dibujando la super-
ficie que define en el espacio-tiempo de coordenadas (7, x, y),
tal y como hemos hecho en la figura 2. La figura geométrica
obtenida se conoce como el cono de luz. Notese que éste
tiene dos hojas; en la hoja superior todos los puntos tienen
coordenada temporal >0 y por lo tanto se encuentran en el
futuro del suceso correspondiente a encender la bombilla,
que en el espacio de Minkowski corresponde al origen de
coordenadas. Por otra parte en la hoja inferior del cono <0
y todos los puntos se encuentran en el pasado del origen.

A los puntos del espacio de Minkowski (z, x, y, z) se les
suele denominar “sucesos”, ya que describen un punto de
espacio (x, y, z) en un determinado instante de tiempo 7. Una
de las consecuencias de los postulados de la relatividad espe-

2Aunque medir tiempos en unidades de longitud pueda parecer extrafio a primera vista, estamos sin embargo acostrumbrados a medir distancias en uni-
dades de tiempo. Esto es lo que hacemos cuando expresamos las distancias entre galaxias en afios-luz.
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Figura 2. El cono de luz asociado a cualquier punto del espacio
de Minkowski utilizando nuestras unidades ¢ = 1.

cial es que la velocidad de la luz es de hecho la velocidad
limite de las sefiales fisicas. Como consecuencia de esto el
cono de luz nos permite representar ademas la estructura
causal del espacio-tiempo. En la figura 2 vemos que el cono
de luz divide al espacio-tiempo en dos regiones bien defini-
das: por una parte los puntos dentro del cono y sobre su
superficie y por otro lado los puntos exteriores al cono. La
clave esta en darse cuenta de que los sucesos situados en el
exterior del cono de luz no pueden tener relacion causal con
el suceso situado en el origen de coordenadas. Efectivamen-
te, si quisieramos enviar una sefial entre el origen y cualquier
punto exterior al cono de luz, dicha sefial tendria que propa-
garse a velocidad mayor que la de la luz. Como consecuen-
cia, el suceso correspondiente al origen no puede influir en
ningun suceso futuro (¢>0) localizado fuera del cono de luz,
e inversamente, ningtin suceso con ¢ <0 fuera de cono de luz
puede influenciar causalmente a lo que suceda en el origen.

Por el contrario, los puntos dentro o sobre el cono de luz
estan en contacto causal con el origen. Esto significa que es
posible enviar una sefal desde el origen a todos los puntos
en el interior de la hoja superior del cono, o que desde cual-
quier punto dentro de la hoja inferior del cono es posible
enviar una sefial que alcance el origen. En ambos casos la
sefal enviada se propaga a velocidad menor o igual que la de
la luz. De esta forma podemos decir que todos los puntos
dentro o sobre la hoja inferior del cono de luz forman nues-
tro pasado, en el sentido de que constituyen el conjunto de
sucesos que han podido influir el aqui y el ahora, que corres-
ponde al vértice del cono de Iuz. Por ejemplo, cuando mira-
mos a las estrellas lo que estamos haciendo es ver parte de la
superficie pasada (hoja inferior) de nuestro cono de luz, ya
que los puntos de éste corresponden a aquellos sucesos desde
los cuales es posible enviar una sefial luminosa al origen del
sistema de coordenadas.

El cambio que esto supone con respecto a la imagen pre-
einsteniana de mundo es radical. Ahora el tiempo no sélo
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deja de ser un parametro espectador para pasar a participar
de la cinemdtica y la dindmica, sino que ademds cada suce-
so en el espacio-tiempo tiene asociado su cono de luz local
que determina su relacion causal con el resto de los sucesos
que forman dicho espacio-tiempo.

Al igual que el espacio euclideo, el espacio de Minkow-
ski viene equipado con su geometria, esto es una forma de
medir la distancia entre dos puntos de dicho espacio.
Consideremos dos sucesos 4 y B cuya diferencia de coorde-
nadas sea Az, Ax y Ay. La “distancia” espacio-temporal entre
ambos sucesos esta dada entonces por

As® = AP — A — Ay 3)

A diferencia del espacio euclideo, la distancia ya no esta
simplemente dada por el teorema de Pitdgoras. Mas aln, en
el espacio de Minkowski la cantidad As? no tiene porqué ser
positiva. Su signo, como veremos a continuacion, nos indica
la posible relacion causal entre ambos sucesos.

Consideremos de nuevo el cono de luz de la figura 2 e
identifiquemos el suceso A con el origen del sistema de coor-
denadas (0, 0, 0). En este caso tenemos tres posibilidades
para el valor del intervalo As2 entre 4 y B:

e As2> 0. En este caso el suceso B se encuentra en el inte-
rior del cono de luz. Diremos entonces que ambos suce-
sos estan separados por un intervalo temporal.

e As2= 0. De la propia definiciéon del cono de luz vemos
que en este caso el suceso B yace sobre la superficie del
cono. Se dice entonces que el intervalo entre los dos
sucesos es nulo.

e As2< (. Ahora el suceso B se encuentra en el exterior del
cono de luz y el intervalo entre los sucesos 4 y B se deno-
mina espacial.

La historia de un sistema viene representada por una
curva en el espacio de Minkowski. Las trayectorias que des-
criben los sistemas fisicos son curvas llamadas temporales.
Esto quiere decir que cada uno de los puntos de la curva se
encuentra en el interior de todos los conos de luz con centro
en cada punto de la misma curva. Esta es la forma geométri-
ca de decir que la velocidad de los sistemas fisicos no puede
exceder la de la luz.

Para ilustrar algunos detalles interesantes de las propie-
dades del espacio-tiempo, simplificaremos las graficas atn
mas ignorando también la coordenada y. Por lo tanto en
muchas de las figuras nuestro espacio tiempo serd bidimen-
sional con coordenadas (7, x) y las trayectorias de los siste-
mas seran curvas en este plano. La geometria local esta dada
por la ecuacion (3) pero suprimiendo la coordenada y

As® = AL — AX’. 4)

Geométricamente las transformaciones entre dos siste-
mas de referencia inerciales corresponden a cambios de
coordenadas (¢, x) — (¢, x") que mantienen invariante el inter-
valo espacio-temporal (4) entre dos sucesos arbitrarioss.
Estas transformaciones se conocen como transformaciones
de Lorentz. Imaginemos que (¢, x") corresponde a las coor-
denadas de un suceso medidas en un sistema de referencia

3El analogo en el espacio euclideo serian las transformaciones ortogonales que dejan invariante la distancia entre dos puntos cualequiera de dicho espacio.
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inercial que se mueve con respecto al sistema (z, x) con velo-
cidad v a lo largo del eje x. No es dificil verificar que las
transformaciones

e xX—vt o t—vx/c?
V1=v*/c? ’ V1=v*/c? ’ ©)

dejan el intervalo (4) invariante y se reducen a las transfor-
maciones de Galileo cuando la velocidad v es mucho menor
que la de la luz. Si representamos su efecto en un plano
euclideo el resultado es bastante chocante (véase figura 3).
Notese sin embargo que, al dejar invariante el intervalo (4)
las transformaciones de Lorentz dejan invariante el cono de
luz y la estructura causal del espacio-tiempo.

t t
A cono
.~ deluz

S>>
X

Figura 3. Representacion dentro de la geometria euclidiana
de la transformacion de Lorentz (5)

3. La paradoja de los gemelos

Una de las paradojas clasicas que se presentan casi siem-
pre en exposiciones elementales de la teoria de la relatividad
es la llamada la paradoja de los gemelos. Supongamos dos
gemelos idénticos, uno de los cuales inicia un viaje de ida y
vuelta con velocidad v mientras que el otro se queda tran-
quilamente esperando el regreso de su hermano. En el siste-
ma de referencia del gemelo que espera el reloj de su her-
mano viajero ira mas despacio que el suyo y por lo tanto en
el reencuentro serd mas joven que ¢l. Pero si uno toma el sis-
tema de referencia que viaja con el segundo gemelo, es el
primer gemelo el que se mueve con velocidad —v y por lo
tanto cuando vuelvan a verse el hermano que se quedd
esperando habra de ser el mas joven. He aqui la paradoja, ya
que cuando los dos hermanos vuelvan a verse las dos alter-
nativas son mutuamente excluyentes.

Si pensamos de forma espacio-temporal, veremos que
esta paradoja no es tal. Pero antes necesitamos entender un
poco mejor el significado de As2. Si en la ecuacion (4) en
lugar del signo negativo los dos términos en el miembro de
la derecha tuviesen un signo positivo podriamos interpretar
As como una distancia. Pero si As2 no tiene un signo defini-
do ;ctal es entonces la interpretacion del intervalo? En el
caso en que As2> 0 el intervalo admite una interpretacion
fisica muy interesante. En este caso podemos considerar un
observador inercial que se mueve con respecto a nuestro sis-
tema de referencia y cuya trayectoria en el espacio de
Minkowski pasa por los sucesos 4 y B. Para este observador
ambos sucesos ocurren en el origen de su sistema de refe-
rencia (Ax = 0) pero separados por un intervalo de tiempo At.

REF Enero-Marzo 2005
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Dado que el intervalo As? entre los dos sucesos es el mismo
para todos los observadores inerciales tenemos que
ASZ
AT? =—. (6)

2
C

En este caso el intervalo entre los dos sucesos 4 y B esta
directamente relacionado con el tiempo propio de un obser-
vador para el que ambos sucesos ocurren en el mismo punto
del espacio (su origen de coordenadas, por ejemplo).

De hecho el concepto de tiempo propio de un observador
en movimiento con respecto a un sistema de referencia
puede generalizarse al caso en que dicho observador se
mueve con velocidad variable. Como hemos comentado mas
arriba, los sistemas fisicos se representan en el espacio de
Minkowski como curvas temporales. En la figura 4 se mues-
tran algunos ejemplos de dichas curvas en el plano x—¢. Por
ejemplo, la curva correspondiente a un observador en repo-
so situado en x = 0 simplemente coincide con el eje tempo-
ral. Por otra parte si el observador se mueve con velocidad
uniforme con respecto al sistema de referencia su trayectoria
en el espacio de Minkowski sera un recta como la linea 1. La
curva 2 corresponde a un observador que se mueve con velo-
cidad variable, mientras que en el caso de la curva 3 tendre-
mos un observador cuyo viaje empieza y termina en el ori-
gen, donde se encontrara de nuevo con el observador en
reposo.

2
t 1
A _-"cono
3 ,-  deluz
B -
X

Figura 4. Varias trayectorias en el espacio de Minkowski.

Para los observadores inerciales sabemos que el tiempo
propio trascurrido entre dos sucesos se relaciona con el inter-
valo espacio-temporal entre ambos por la formula (6). Esta
relacion entre tiempo propio y “distancia” espacio-temporal
puede extenderse facilmente al caso de observadores no iner-
ciales. Consideremos de nuevo la trayectoria 2 en la figura 4.
Siempre podemos “rectificar” dicha curva con precision
arbitraria por una linea poligonal de forma que en cada seg-
mento de dicha curva la relacion (6) entre el tiempo propio y
el intervalo entre los extremos del segmento es aplicable.
Sumando los distintos valores de At en cada segmento (esto
es, haciendo la integral sobre t a lo largo de la trayectoria)
obtenemos el tiempo que marcard el reloj que acompana al
observador en su recorrido. Por lo tanto para un observador
arbitrario su tiempo propio estara dado por (6), donde ahora
As es la “longitud” de la trayectoria de dicho observador en
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el espacio de Minkowski. Es importante notar que en este
analisis es crucial el que la curva sea temporal, ya que esto
garantiza que As en cada segmento es una cantidad real.

Sabiendo esto podemos intentar clarificar la paradoja de
los gemelos. Imaginemos un grupo de gemelos que comien-
zan su viaje de ida y vuelta en x=0 con diferentes velocida-
des (véase la figura 5), mientras que uno de ellos (el obser-
vador 1) se queda en x=0 viendo pasar el tiempo. Dado que
las trayectorias espacio-temporales de los diferentes obser-
vadores tendran diferentes longitudes nos podemos pregun-
tar cual de los gemelos sera el mas joven cuando vuelvan a
encontrarse en 4. Si nos dejasemos llevar por nuestra intui-
cion euclidiana y concluyésemos que la trayectoria 5 es la de
mayor longitud, llegariamos a la conclusion errénea de que
el observador 5 seria el mas viejo al llegar a 4. Sin embargo,
precisamente debido al signo menos en la férmula (4), la tra-
yectoria 5 es la de menor longitud espacio-temporal y por lo
tanto sera para este observador para el que el viaje haya
durado menos. Una manera intuitiva de comprobar este
hecho sin hacer ningun calculo es darse cuenta de que esta
trayectoria es la mas cercana al cono de luz y que los puntos
sobre este satisfacen As2=0. Por lo tanto en la fiesta de reen-
cuentro que los gemelos organizaran en A el gemelo 1 sera
mas viejo que el gemelo 2, éste a su vez sera mas viejo que
el gemelo 3 y asi sucesivamente, siendo el gemelo 5 el mas
joven de todos.

A

’
’

_.“‘cono de
Al o luz

0’ —

Figura 5. Familia de observadores considerados en el texto y donde
se compara la juventud relativa de ellos en el suceso A.

De nuestro analisis anterior se sigue que el gemelo que
viaja sera siempre mas joven que el que se quedod en reposo
en un sistema de referencia inercial. Lo que elimina la para-
doja es que el sistema de referencia del gemelo que viaja no
es un sistema inercial y por lo tanto no podremos aplicar las
formulas de la relatividad especial para concluir que respec-
to de dicho sistema de referencia el reloj del gemelo “iner-
cial” va mas despacio.

Finalmente, como corolario a la figura 5, nos gustaria
sefalar que segun la Teoria Especial de la Relatividad cuan-
do buscamos la trayectoria de una particula libre entre un
suceso inicial y otro final, la dindmica selecciona aquella
que, pasando por los dos sucesos, corresponde a un tiempo
propio mayor.
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4. La relatividad general

En su articulo de 1905 [2]. Einstein hizo compatibles la
mecanica y el electromagnetismo en beneficio de éste ulti-
mo: las ecuaciones de Maxwell toman la misma forma en
todos los sistemas de referencia inerciales y la velocidad de
la luz es la misma para todos los observadores, proporcio-
nando ademas la velocidad méaxima para la transmision de
informacion o interacciones. Cada suceso estd equipado con
su cono de luz y (4) define la nueva geometria local.

Haciendo un inciso, es francamente curioso que la geo-
metrizacion de la relatividad especial llevada a cabo por
Minkowski no fue del agrado de Einstein que la tildo de
“erudicion innecesaria” [3]. Sin embargo, como él mismo
tuvo que admitir mas adelante, la formulacién minkowskia-
na parecia la mas adecuada para asaltar el problema que el
propio Einstein se habia propuesto poco tiempo después de
formular la Teoria Especial de la Relatividad: la formulacién
de una teoria relativista de la gravitacion. Este era el paso
logico después de que la relatividad especial hubiese esta-
blecido la armonia entre la mecanica y la electrodinamica.

Al igual que con la Teoria Especial de la Relatividad, el
camino de Einstein hacia la formulacion de la relatividad
general se inicia, en 1907, con un experimento imaginario:
para el infortunado individuo que cae desde lo alto del teja-
do de una casa el campo gravitatorio deja de existir mientras
dura su caida. Durante ese tiempo el observador experimen-
tara la misma sensacién que tendria si se encontrara en ingra-
videz. Esta “simple” observacion, que Einstein calificé como
“la ocurrencia mas afortunada de mi vida”, constituye el lla-
mado principio de equivalencia y resulto ser la piedra angu-
lar sobre la que se construy6 todo el edificio de la Teoria
General de la Relatividad.

Para entender el principio de equivalencia un poco mejor
vamos a considerar un ejemplo familiar. Todos estamos ya
acostumbrados a ver las imagenes de astronatuas en estacio-
nes espaciales que orbitan alrededor de la Tierra y en las que
estos flotan como si se encontrasen en ausencia de gravedad.
Sin embargo un sencillo calculo muestra que la aceleracion
de la gravedad terrestre en una estacion espacial que se
encuentra a una altura de, por ejemplo, 2 = 400 kilometros
sobre la superficie de la Tierra no es ni mucho menos des-
preciable:

—2

2=9,8/1+ é ms” =8,7ms".

Por lo tanto la aceleracion de la gravedad alld arriba es
solo ligeramente mas pequefia que la que experimentamos
sobre la superficie de la Tierra. ;Coémo podemos explicar
entonces que los astronautas parezcan no sentir ningun tipo
de atraccion gravitacional? Lo que realmente ocurre es que
tanto los astronautas como el equipo y la propia nave al orbi-
tar estan en caida libre hacia la Tierra y por lo tanto de acuer-
do con el principio de equivalencia es como si no sintiesen
el campo gravitatorio.

Igualmente un astronauta en una nave espacial localizada
muy lejos de cualquier cuerpo celeste y que por lo tanto se
encuentra en estado de ingravidez puede simular el campo
gravitatorio terrestre usando el principio de equivalencia. Si
este astronauta enciende los cohetes de su nave de forma que
ésta adquiera una aceleracion igual a 9.8 m s-2 los tripulan-
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tes de dicha nave experimentaran una fuerza en direccion
contraria que dara lugar a una aceleracion en todos los cuer-
pos igual a 9.8 m s2 independientemente de su masa.

El principio de equivalencia supuso para Einstein el ini-
cio del largo y tortuoso camino que tras ocho afios y mas de
un fracaso le condujo a la descripcion del campo gravitato-
rio como un efecto de la geometria del espacio-tiempo.
Como hemos indicado mas arriba, todos los observadores
inerciales observan la misma métrica del espacio-tiempo.
Esto no es cierto sin embargo para observadores no inercia-
les (acelerados) para los cuales la métrica vendra dada por
una forma cuadratica general. El principio de equivalencia
nos dice que, localmente, podemos eliminar un campo gra-
vitatorio simplemente dejandonos caer con ¢l o crearlo ace-
lerando nuestro sistema de referencia inercial.

Ya hemos mencionado que en la geometria riemanniana
el teorema de Pitdgoras gobierna la geometria local. En un
entorno suficientemente pequefio de un punto dado la geo-
metria euclidiana puede aplicarse con un alto grado de pre-
cision. Este hecho nos da la pista para concretar el principio
de equivalencia en términos geométricos. Lo que la observa-
cion del individuo que cae del tejado nos estd diciendo es
que en presencia de la gravedad existen sistemas de referen-
cia en los que la geometria del espacio-tiempo es localmen-
te la de Minkowski. Asi elementos como el cono de luz y la
estructura causal que hemos discutido mas arriba siguen for-
mando parte fundamental de la descripcion de la naturaleza
cuando tenemos en cuenta el efecto de los campos gravitato-
rios.

La imagen del mundo que surge de la Teoria General de
la Relatividad es la de un espacio-tiempo riemanniano dénde
localmente la geometria es Minkowskiana. Junto a esto, los
sistemas de referencia inerciales dejan de tener el papel fun-
damental que jugaban en la relatividad especial; como nos
ensefia el principio de equivalencia el efecto de la gravedad
es localmente equivalente al de las fuerzas de inercia que
aparecen en sistemas de referencia no inerciales y por lo
tanto estos han de considerarse al mismo nivel que los siste-
mas de referencia inerciales. Como consecuencia, la métrica
del espacio-tiempo no tendra en general la forma tan simple
que habiamos usado en la ecuacion (3). Ahora el intervalo
entre dos sucesos proximos vendrd determinado por diez
coeficientes que constituyen el llamado tensor métrico

3
2 _ i J
As”™ = Z g;Ax Ax’. (7
i,j=0

Aqui hemos etiquetado las coordenadas espacio-tempo-
rales como (x0, x!, x2, x3) y los diez coeficientes indepen-
dientes g; (g;= g;;) son en general funcion de las coordena-
das. Lo importante es que localmente siempre existe un sis-
tema de referencia con coordenadas (x'0, x'l, x'2, x'3) tales

que en dicho sistema As? toma la forma

AS2 :(AXJO)Z_(AXJI)2_(Ax,2)2_(Ax,3)2. (8)

Esta es la expresion matematica del principio de equivalencia.
A pesar de la mayor complejidad matematica del intervalo
(7) su interpretacion fisica sin embargo es completamenta
analoga al caso minkowskiano. Al igual que en la ecuacion
(6) At = As/c define localmente el tiempo propio de un
observador en movimiento arbitrario. Asimismo cada suceso
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tiene su cono de luz asociado, que una vez mas se define
como el lugar geométrico de los sucesos para los que As2=0.
Es decir, el cono de luz estd definido otra vez por las trayec-
torias de propagacion libre de los rayos de luz. Las trayecto-
rias de las particulas se obtienen maximizando el tiempo pro-
pio, al igual que en el espacio de Minkowski. Las curvas que
unen dos sucesos y a lo largo de las cuales el tiempo propio
es maximo se conocen como geodésicas. Por lo tanto, en pre-
sencia de un campo gravitacional, las particulas describirdn
geodésicas en un cierto espacio-tiempo curvado cuya geo-
metria esta descrita por (7).

Este argumento heuristico nos da la pista sobre como des-
cribir el campo gravitacional en términos geométricos. Sin
embargo no nos dice nada sobre la dinamica del campo gra-
vitacional, esto es, sobre como la distribucion de materia
determina la gravedad. Este fue de hecho el gran problema al
que tuvo que enfrentarse Einstein durante los afios que durd
la elaboracion de la Teoria General de la Relatividad y que
absorbi6 la mayor parte de su actividad llevandole casi hasta
la extenuacion fisica.

No vamos a entrar aqui a explicar en detalle las ecuacio-
nes de la relatividad general. Pero dada su belleza no pode-
mos resistirnos a escribir las ecuaciones de Einstein del
campo gravitatorio [4]

1 G
Ry =2 &R=—5"1T;. ©)

El miembro de la izquierda de esta ecuacion contiene tni-
camente cantidades asociadas con la geometria del espacio
tiempo: R;; es el llamado tensor de Ricci que se expresa en
términos de la métrica y sus derivadas segundas y R es el
escalar de curvatura, definido como la traza del tensor de
Ricci

R= 23: g'R;.

i,j=0

(10)

Por otra parte el miembro de la derecha de (9) contiene la
informacion sobre la distribucion de materia-energia del
espacio tiempo, codificada en el tensor de energia-momento
T;;. Vemos por lo tanto que, moralmente, las ecuaciones de
Einstein las podemos escribir como

Geometria = Materia

Es decir, la presencia de materia tiene como resultado la
curvatura de espacio-tiempo, algo que nosotros observamos
en forma de campos gravitatorios. Ademas, la teoria de
Newton de la gravitacion se obtiene entonces de las ecuacio-
nes de Einstein en el limite de bajas velocidades y pequefias
concentraciones de masa.

5. Agujeros negros

Desgraciadamente no nos es posible analizar en detalle
todas y cada una de las fascinantes predicciones de la relati-
vidad general, muchas de las cuales ha sido comprobadas
observacionalmente con precisiones asombrosas. Aqui men-
cionaremos las que son quizas las mas conocidas: la existen-
cia de agujeros negros y la expansion del Universo.

Uno de los resultados mas profundos de la relatividad
general es que en cierto sentido la teoria conoce sus limites.
Bajo ciertas condiciones muy generales la materia colapsa
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sin limite hasta formar una singularidad en el espacio-tiem-
po. El ejemplo mas tipico de este fenomenos es de una estre-
lla muy masiva (cuya masa, digamos, es muchas veces la del
Sol) que colapsa bajo la influencia de su propia gravedad?.
En lugar de presentar un analisis detallado de este proceso en
términos matematicos vamos a intentar entender los aspectos
esenciales de la formacion de un agujero negro con la ayuda
de la figura 6. En este dibujo también puede verse la orien-
tacion de los conos de luz en cada punto. Recor-demos que
como las propiedades geométricas del espacio-tiempo en
torno a la estrella varia de un punto a otro lo mismo ocurre
con la estructura de conos de luz. En particular estos apun-
taran en diferentes direcciones en cada punto, a diferencia de
lo que ocurre en el espacio de Minkowski donde todos los
conos de luz son paralelos.

Imaginemos que inicialmente nos encontramos en el
extremo inferior de la figura sobre la superficie de la estre-
lla. A medida que ésta colapsa los ejes de los conos de luz
sobre los puntos en la superficie de la estrella se van incli-
nando mas y mas hacia el interior de la estrella. De hecho
llega un momento en que los rayos de luz emitidos desde la
superficie de la estrella no pueden escapar a regiones lejanas.
Este fendmeno corresponde a la formacion del llamado hori-
zonte de sucesos, y tiene lugar cuando el radio de la estrella
colapsante decrece por debajo del radio de Schwarzschild$

R - 2GM ’

2
C

(11)

doénde M es la masa de la estrella. En la figura 6 el horizon-
te de sucesos corresponde a la superficie cilindrica de radio
R;,. Como vemos, los conos de luz sobre el horizonte son tan-
gentes esta superficie y apuntan hacia el interior de ella.
Como consecuencia ninguna sefial emitida sobre o dentro del
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Figura 6. Estructura causal en el espacio-tiempo alrededor de
una estrella que colapsa [5].
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horizonte podra alcanzar al astronauta que observa el colap-
so desde la lejania.

Una vez formado el horizonte la estrella seguira su pro-
ceso de colapso hasta que en un tiempo finito, medido por el
observador sobre su superficie, toda la masa de ésta se con-
centre en el punto » = 0 formando una singularidad en el
espacio-tiempo donde la curvatura tiende a infinito. Dado
que ninguna sefal puede abandonar el horizonte, esta singu-
laridad no sera observable desde el exterior del agujero
negro y la fisica fuera del horizonte estd completamente
desacoplada de lo que ocurre en el interior. Para un observa-
dor externo el agujero negro es, cldsicamente, una superficie
esférica completamente negra de radio R, que se traga todo
aquello que la atraviesa®. Es interesante que en el caso que
hemos discutido la presencia del horizonte nos protege de la
pérdida de predictibilidad que supondria la existencia de una
singularidad “desnuda”. En los afios setenta Roger Penrose
formul6 la conjetura conocida como “censura cosmica".
Segun ella, todo colapso gravitatorio realista deberia siempre
producir un horizonte que separe a los observadores asinto-
ticos de la singularidad. Hasta ahora, sin embargo, no se ha
dado ninguna demostracion de esta conjetura e incluso hay
dudas sobre su validez general.

Para mejor comprender la deformacion que sobre el espa-
cio-tiempo produce una estrella que colapsa vamos a com-
parar el tiempo propio de un astronauta incauto que se
encuentra sobre la superficie de la estrella con el tiempo que
marca el reloj de otro astronauta, mas precavido, que obser-
va el colapso desde lejos. Supongamos que el astronauta
desde la superficie de la estrella nos envia un saludo. La
figura 7 nos muestra la sucesién de acontecimientos tanto
para el astronauta que cae como para su compafiero que le
observa desde lejos.

Al principio del colapso los tiempos propios de ambos
astronautas son casi iguales, como puede verse del hecho de
que los primeros fotogramas en las dos peliculas de la figu-
ra 7 son practicamente idénticos. Esto cambia, sin embargo,
cuando el radio de la estrella en colapso se acerca a Ry.
Como podemos ver en los sucesos £, E, y E; de la figura 6,
al acercarnos al horizonte de sucesos los conos de luz se
inclinan hacia el interior de éste, lo que hace que los rayos de
luz emitidos por el infortunado astronauta tarden cada vez
mas en llegar a su compafiero. Ademas de tardar mas en lle-
gar a su destino, las sefales luminosas enviadas desde la
superficie de la estrella pierde gran parte de su energia para
poder escapar del pozo de potencial gravitacional en el que
cae el astronauta, es decir, presentaran un desplazamiento
hacia el rojo al ser recibidas. Esto significa que la longitud
de onda de la sefal que recibe el astronauta lejano sera
mucho mayor que la que tenia dicha sefial al ser emitida
sobre la superficie de la estrella.

Finalmente, cuando el astronauta atraviesa el horizonte
(el suceso E, en la figura 6) su cono de luz se encontrard den-
tro del horizonte por lo que le serd imposible cualquier
comunicacion con el exterior del agujero negro. Sin embar-

4Un problema fisico muy interesante es el estudio de los estadios finales de la vida de una estrella y sus diferentes destinos dependiendo de su masa: ena-

nas blancas, estrellas de neutrones o agujeros negros.

S5Para hacernos una idea del tamafio de este radio baste decir que para un objeto con la masa de la Tierra, R, seria approximadamente igual a 9 milimetros.
6De hecho, como demostr6 Stephen Hawking en 1975, debido a los efectos cudnticos la superficie del agujero negro no es completamente negra, sino que
emite radiacion térmica con temperatura Ty = /i ¢/(4n kg Ry), donde kg es la constante de Boltzmann.
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Figura 7. Comparacion entre el tiempo propio de un astronauta que
cae en un agujero negro (film A) y el del astronomo que observa pre-
ocupado (film B) [5].

go el astronauta que observa todo desde lejos no dejara
nunca de ver a su compafiero. A medida que éste se acerca al
horizonte la imagen del intrépido astronauta se ira ralenti-
zando hasta que finalmente quedard s6lo una “imagen fija”
que se ira haciendo mas y mas roja y débil hasta acabar por
desvanecerse en un tiempo infinito. Para el astronauta que
cae, sin embargo, nada especial ocurre cuando atraviesa el
horizonte, tal y como podemos ver en la figura 6. Ignorante
de su destino, ¢l seguira saludando a su colega hasta que al
cabo de un tiempo finito serd destruido en la singularidad.

6. Cosmologia

Poco después de formular la Teoria General de la
Relatividad en 1915 Einstein intent6 su aplicacion al estudio
del Universo en su conjunto. Para ello introdujo lo que hoy
conocemos como el Principio Cosmolégico, segtn el cual
ningun observador en el Universo ocupa una posicion privi-
legiada de forma que las propiedades geométricas del Uni-
verso deben de ser independientes del punto. En general la
Teoria General de la Relatividad junto con el Principio
Cosmologico conduce a un universo dinamico. Sin embargo,
cuando Einstein publicé en 1917 el que puede considerarse
como el articulo fundacional de la cosmologia relativista [6]
no habia evidencia alguna de que el Universo se estuviese
expandiendo. Por ello Einstein modifico las ecuaciones de la
relatividad general afiadiendo un término adicional Ag; en el
miembro de la izquierda de (9). Asumiendo que las seccio-
nes espaciales del Universo eran esferas de tres dimensiones,
existia un valor de A para la cual el Universo era estatico.

En 1929 Edwin Hubble obtuvo la primera evidencia
observacional de la expansion del Universo mediante la
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observacion del deplazamiento hacia el rojo de las galaxias
lejanas, que mostraba que éstas se alejaban de nosotros en
todas las direcciones con velocidades de recesion proporcio-
nales a su distancia (ley de Hubble). Esto supuso el abando-
no del modelo estatico de Einstein, asi como de la constante
cosmoldgica, cuya introduccién el propio Einstein califico
como “el mayor error de mi vida™7.

Soluciones no estaticas compatibles con el Principio
Cosmologico fueron obtenidas por Willem de Sitter, Alexan-
der Friedmann, Georges Lemaitre, Howard Robertson y
Arthur Walker en los afios siguientes a la formulacion de la
relatividad general. En particular el llamado modelo de
Friedmann-Lemaitre-Robertson-Walker describe un univer-
so en expansion en el que las galaxias lejanas satisfacen la
ley de Hubble. Una de las predicciones mas importante de
este modelo es que en el pasado el Universo fue mucho mas
denso y mas caliente de lo que es en la actualidad, hasta lle-
gar a un instante en el que la densidad de energia y la curva-
tura del espacio-tiempo divergen. Esta singularidad inicial,
en la cual la teoria pierde toda predictibilidad, es el llamado
Big-Bang. Vemos que, al igual que ocurre en el proceso de
colapso gravitatorio de una estrella supermasiva, la relativi-
dad general predice la existencia de singularidades en las que
la propia teoria deja de ser valida. Este es un nuevo ejemplo
de algo que ya hemos mencionado mas arriba: la Teoria
General de la Relatividad nos proporciona sus propios limi-
tes. En los aflos sesenta Roger Penrose y Stephen Hawking
demostraron rigurosamente que, bajo condiciones muy gene-
rales, la singularidad inicial es inescapable en la cosmologia
relativista.

La cosmologia de Big-Bang ha recibido muchas e impor-
tantes comprobaciones experimentales por lo que hoy se
habla de ella como del modelo cosmologico estandar. Quizas
la mas espectacular ha sido el descubrimiento en 1964 de la
radiacion de fondo de microondas por Arno Penzias and
Robert Wilson, una prediccion inequivoca del modelo de
Big-Bang. Esta radiacién es una reliquia de los tiempos
inmediatamente posteriores al Big-Bang en los que el Uni-
verso era mas denso y mas caliente.

En cosmologia, al igual que vimos al estudiar la forma-
cién de un agujero negro, la geometria del espacio-tiempo
condiciona la estructura causal del mismo. En términos
generales sabemos que al observar el Universo estamos de
hecho explorando la superficie pasada de nuestro cono de
luz. En un espacio-tiempo eterno, como es el espacio de
Minkowski, este cono de luz se extiende indefinidamente en
el pasado por lo que, en principio, tenemos la posibilidad de
recibir sefiales luminosas emitidas desde regiones arbitraria-
mente alejadas de nuestra posicion. Esto sin embargo no es
posible en un universo como el nuestro que se origind en
algin instante de tiempo en el pasado. La existencia del Big-
Bang implica que el Universo solo ha existido durante un
tiempo finito en el pasado y como consecuencia la luz pro-
cedente de regiones suficientemente lejanas de nosotros no
habra tenido tiempo de alcanzarnos desde que el Universo
comenzo a existir.

Este fenomeno aparece ilustrado en la figura 8 usando el
espacio-tiempo bidimensional que introdujimos mas arriba.

7Recientes observaciones cosmoldgicas muestran, no obstante, una aceleracion en la expasion del Universo que puede atribuirse a un valor no

nulo de la constante cosmologica.
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Figura 8. Ilustracion de la existencia de horizontes de particulas.
Ninglin suceso con x <x, 0 x > xg serd observables desde O.

Vemos que debido a la extension finita en el pasado del cono
de luz, en O sélo podremos recibir sefiales procedentes de
puntos con coordenadas x, < x <xp. Por lo tanto cualquier
suceso pasado que haya tenido lugar mas alla de esta region
(digamos, por ejemplo, en un punto con coordenada espacial
xp) no serd accesible desde O. Esto define lo que se conoce
como un horizonte de particulas. Su existencia implica que
aun cuando pudieramos construir instrumentos de observa-
cion infintamente precisos nuestras posibilidades de obser-
var el Universo estan limitadas a una region finita alrededor
de nuestra posicion. La distancia al horizonte es aproxima-
damente igual a la distancia que la luz ha tenido tiempo de
recorrer desde el Big-Bang, esto es c¢7, donde T ~ 1010 afios
es la edad del Universo. Vemos por lo tanto que la distancia
al horizonte, es decir la region accesible a la observacion,
aumenta con el tiempo. Por lo tanto si, como todo parece
indicar, la expansion del Universo es eterna las regiones
arbitrariamente alejadas de nosotros acabaran siendo visibles
en el futuro.

7. Conclusiones

En este breve ensayo hemos intentado transmitir las ideas
basicas que constituyen la imagen relativista del mundo y
como el trabajo de Einstein revolucion6 nuestra concepcion
del Universo en su conjunto. Con la relatividad especial
aprendimos que el espacio y el tiempo absolutos de la fisica
newtoniana han de ser reemplazados por el espacio-tiempo,
y que las leyes de la fisica han de ser compatibles con su
estructura geométrica. Por otra parte la Teoria General de la
Relatividad nos ha mostrado que el espacio-tiempo no es un
simple espectador donde los sucesos tienen lugar sino que él
mismo y su geometria son objetos de la dindmica.
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Para el propio Einstein la formulacion de la relatividad
general no fue mas que el principio de la busqueda de una
teoria unificada de la gravitacion y el electromagnetismo. En
este empefio su principal herramienta fue de nuevo la geo-
metria riemanniana y sus generalizaciones. A pesar de que
por diversas razones la empresa de construir tal teoria unifi-
cada estaba condenada al fracaso su espiritu ha sobrevivido.
Hoy en dia una parte importante de la comunidad cientifica
considera que la ultima frontera de la fisica tedrica se
encuentra precisamente en la consecucién de una descrip-
cion unificada de todas las interacciones incluyendo la gra-
vedad. Esto muy probablemente implica la construccion de
una teoria cuantica de la gravedad cuyas propiedades hoy
solo podemos atisbar.

Quizas la mayor dificultad de esta sintesis final radique
en que, como hemos visto, la geometria del espacio-tiempo
es juez y parte: no solo nos proporciona el sustrato sobre el
que la fisica tiene lugar, sino que al mismo tiempo participa
en ella con su propia dindmica. En la teoria final el espacio-
tiempo debera quizas de dejar de ser un concepto aprioristi-
co para convertirse en un concepto emergente o derivado,
igual que las particulas lo son en una teoria cudntica de cam-
pos. Una cumbre dificil de alcanzar, sin duda, pero cuya cul-
minacion se contara entre los mas grandes logros de la mente
humana.
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