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1. Introduccion

La fisica cuantica y la relatividad especial nacieron a
principios del siglo pasado, en 1900 de la mano de Max
Planck la primera y en 1905 de la mano de Albert Einstein la
segunda, para dar respuesta a fendémenos inexplicables en el
marco de la fisica clasica. El mismo Einstein sent6 en 1905
las bases de lo que seria uno de los conceptos mas sutiles y
fructiferos de la fisica del siglo XX: el foton o particula de
luz. En 1948, en los laboratorios Bell de la compatfiia de telé-
fonos de los EEUU, se desarrolld la teoria de la informacion
y de la comunicacion. ésta también fue la creacion de una
sola persona: el matematico e ingeniero Claude Shannon [1].

La interfertilizacion de estas tres teorias es el tema de este
articulo que expondremos intentando seguir una maxima de
Einstein: las explicaciones deben ser tan sencillas como sea
posible, pero no mas sencillas.

Con el paso del tiempo se entendid que la descripcion
cuantica de los estados en que se encuentran los sistemas
fisicos es la forma matematicamente mas compacta de resu-
mir la informacion que tenemos sobre ellos. Como dijo
Rudolf Peierls, “In my view the most fundamental statement
of quantum mechanics is that the wave function or, more
generally the density matrix, represents our knowledge of the
system we are trying to describe” [2]. La medida cuantica
produce, al aumentar o actualizar nuestro conocimiento, una
modificacion instantdnea de esta descripcion cuantica del
estado: el llamado colapso de la funcién de onda. Como las
funciones de onda son extensas, su modificacion instantanea
podria hacer pensar que la informacion que contienen se pro-
paga instantaneamente, ya que la funcion de onda post-medi-
da puede ser no nula donde antes de la medida lo era. El pro-
blema se agudiz6 cuando a partir del trabajo conocido como
la paradoja de Einstein, Podolsky y Rosen (EPR) de 1935 [3]
se comprendio que las correlaciones cuanticas o entrelaza-
miento, descritas magistralmente ese mismo afio por Erwin
Schrédinger [4], permitian modificar instantineamente y a
distancia el estado de un sistema fisico con s6lo medir sobre
otro sistema fisico entrelazado con el primero.

La teoria especial de la relatividad consagro la velocidad
de la luz en el vacio, ¢ = 300.000 km/s, que también es la de
todas las ondas electromagnéticas, como una velocidad limi-
te para las particulas materiales y por tanto como la maxima
velocidad con la que se puede propagar la energia. Mas
tarde, y como le gustaba insistir a Rolf Landauer (“informa-
tion is physical”) [5], se entendi6 que la informacién siem-
pre se propaga sobre un soporte energético y que por lo tanto
tampoco puede hacerlo a velocidad superior a c.

Parece pues haber una contradiccion entre la accion a dis-
tancia, es decir, instantdnea, de la mecénica cuantica y el
tiempo finito que, seglin la relatividad especial, necesita la

informacion para recorrer la distancia que separa la causa del
efecto cuando éstos ocurren en lugares distintos. Veremos
que no es asi, la informaciéon no se propaga instantaneamen-
te en el marco cuéntico y esto es debido a que la informacion
es subjetiva, la adquiere el fisico observador en el momento
de la medida, y aunque se refiera a un objeto distante, como
ocurre cuando hay correlaciones cuanticas, la informacion
no ha viajado de este objeto distante hasta el observador.
Para otro observador, asociado al objeto distante, nada ha
cambiado, nada ha aprendido y ninguna informacion le ha
llegado instantaneamente.

2. Informacion

La palabra informacion se asocia a veces al concepto
“significado”. La informacion como significado es muy difi-
cil de cuantificar. En el prologo al libro que contiene el arti-
culo de Shannon publicado un afio antes, Warren Weaver
dice lo siguiente: “One has a vague feeling that information
and meaning may prove to be something like a pair of cano-
nically conjugate variables in quantum theory, they being
subject to some joint restriction that condemns a person to
sacrifice of the one as he insists of having much of the other”
[6]!. El concepto de informacion introducido por Shannon es
el de medida de la sorpresa. Por ejemplo, si decimos “el Sol
saldra mafiana”, es una frase con muy poca o nula informa-
cion: no se aprende nada. En cambio, la sentencia “el Sol no
saldra mafana”, es muy sorprendente y por lo tanto contiene
una gran cantidad de informacion. La medida de la informa-
cion sera, segun ello, una funcién de las probabilidades.

Supongamos que cierto suceso S ocurre con probabilidad
p(S) y llamemos /(S) al contenido de informacion del suceso
S. (Qué propiedades deberia cumplir /(S)? Los siguientes
requisitos son de sentido comun: (i) si un suceso S; ocurre
con menor probabilidad que otro S, [p(S,) < p(S,)] entonces
S, contiene mas informacion (es mas sorprendente) que S5, es
decir, 1(S)) > 1(S,); (i) si S, y S, son sucesos independientes
[p(S;NS,) =p(S)) p(S,)], la informacion contenida en ambos
sucesos deberia ser la suma /(S, U S,)=1(S)) + I(S,); y (iii) un
suceso cualquiera siempre contiene algo de informacidon
(salvo que su ocurrencia fuese inevitable) /(S)>0, VS. Estas
tres propiedades practicamente determinan que la tnica solu-
cion sea I(S) oc —log[p(S)]. La constante de proporcionalidad
se puede elegir de forma que /(S)=-1og,[p(S)]. La unidad de
informacion con esta eleccion es el bit. Por ejemplo, si tene-
mos dos sucesos excluyentes {S,, S,} que pueden ocurrir con
la misma probabilidad p(S,) =p(S,) = 1/2, entonces la infor-
macion contenida en cada uno de ellos es un bit, /(S,)=1(S,)
=1. Si el conjunto es de cuatro sucesos equiprobables, cada
uno de ellos contiene 2 bits de informacion.

INotese el sutil cambio de articulo en el titulo del libro [6] respecto al titulo del trabajo original [1].
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Si los sucesos no son equiprobables, obviamente el con-
tenido de informaciéon de cada suceso sera diferente. En
general estaremos interesados en el promedio de informa-
cion adquirida. La entropia de Shannon es precisamente este
promedio y es el concepto fundamental de la teoria de la
informacion. Especificamente, si los sucesos corresponden
a una variable aleatoria X, y los etiquetamos por X=x,, ..., X
=Xx, y a sus correspondientes probabilidades por {p,..., p,},
la entropia de Shannon es

HX) =3 plp=-5plogp, [p,=p(X=x)]
! !

Para hacernos una idea del significado de esta funcion,
supongamos que los sucesos corresponden a las diferentes
letras {a,b,c,...} de un mensaje (conjunto de letras) que se
envia por un cierto canal de transmision y sabemos que cada
letra aparece con cierta probabilidad. La entropia de
Shannon H(X) nos da la informacion promedio que se trans-
mite por cada letra que se envia. En el idioma inglés es apro-
ximadamente 1 bit por letra transmitida (un valor parecido es
de esperar en castellano). Es facil ver que el maximo de la
entropia de Shannon, H(X), ocurre si todas las probabilida-
des son iguales p, = p, = ... = p,, que para el inglés o caste-
llano corresponderia a unos 4.7 bits por letra transmitida.
Estos idiomas son redundantes en aproximadamente un
80%. Por eso nos entendemos a pesar de lo mal que habla-
mos y podemos almacenar y transmitir los textos de forma
comprimida, es decir de forma cmprmd. En el caso opuesto,
si un suceso tiene probabilidad uno y el resto cero, la
entropia de Shannon es cero. En efecto, no hay ninguna sor-
presa en el hecho de que ocurra un suceso que sabemos que
tiene un 100% de probabilidad de ocurrir.

3. Luz e informacion

En el marco de la relatividad especial la aceleracion pro-
ducida por una fuerza constante que actlia sobre una particu-
la de masa no nula tiende hacia cero a medida que la veloci-
dad se acerca a la velocidad de la luz en el vacio, ¢, y la
energia necesaria para alcanzar ¢ se hace infinita. En otras
palabras, toda particula material se propaga con una veloci-
dad inferior a c. Ademas esto es asi en cualquier sistema de
referencia, aunque los valores concretos de la velocidad y
energia de la particula varien de un sistema a otro. Las ondas
electromagnéticas, por otro lado, se propagan en el vacio a la
velocidad ¢, en todos los sistemas de referencia. Como al
transmitir una informacion utilizamos particulas u ondas
electromagnéticas, se sigue que la informacion, al igual que
la energia que transporta la particula o la onda electro-
magnética, no puede propagarse a velocidad superior a la de
la luz en el vacio.

En el marco de la mecanica cuantica las particulas mate-
riales tienen asociada una onda que representa su estado
cuantico en el espacio. Las ondas electromagnéticas se des-
criben en funcion de los fotones, particulas sin masa que
corresponden a los estados de energia minima, /v, de una
onda electromagnética de frecuencia v, o, como veremos
mas adelante, a cualquier superposicion de estos estados de
energia bien definida. /4 es la constante de Planck, cuyo valor
es tan pequefio que harian falta mas de 10 trillones de foto-
nes de color amarillo para calentar un gramo de agua un

REF Enero-Marzo 2005

Temas de Fisica

grado. Tal como ocurre con las particulas materiales, los
estados de fotones suficientemente localizados, 1lamados
pulsos, también se representan por una onda en el espacio,
que en el vacio se propaga con velocidad c. Si consideramos
la propagacion en una sola dimension, como todas las fre-
cuencias se propagan con la misma velocidad ¢, la onda no
modifica su forma y la velocidad de grupo, que podemos
interpretar como la velocidad del maximo de la onda, tam-
bién es c.

Cuando consideramos la propagacion de una particula u
onda en un medio, asociarle una velocidad es mucho mas
ambiguo que en el caso de una particula clasica. Esto es
debido a que las distintas frecuencias se propagan con dis-
tintas velocidades, por lo que la onda cambia de forma.
Normalmente es la velocidad de grupo la que tiene las carac-
teristicas de velocidad fisica y en circunstancias normales no
supera a c. La informacion contintia propagandose a veloci-
dades que no superan a la de la luz en el vacio [7]. Sin
embargo, cuando el medio es inusual pueden pasar cosas sor-
prendentes [8]. Asi en el aflo 2000 Wang, Kuzmich y Doga-
riu dicen en el resumen de un articulo muy discutido y
comentado que publicaron en Nature [9]: “...this means that
a light pulse propagating through the atomic vapour cell
appears at the exit side so much earlier than if it had propa-
gated the same distance in a vacuum that the peak of the
pulse appears to leave the cell before entering it”. Los auto-
res afirman que este resultado no viola causalidad ni la rela-
tividad especial, y lo explican como la consecuencia de un
fenomeno de interferencia en una region de dispersion and-
mala. La explicacion defendida por Charles Bennett, aunque
rechazada por los autores, es una ya conocida desde hacia
tiempo y se basa en una amplificacion de los precursores del
pulso (el frente de la onda de pequefia amplitud pero que
contiene toda la informacién del pulso) [10]. Esta amplifica-
cion es posible gracias a una cesion temporal de energia por
parte del medio, que posteriormente recupera cuando llega la
parte central del pulso (de gran amplitud). Esto ultimo suce-
de cuando ya han emergido del medio los precursores ampli-
ficados y que tienen todas las caracteristicas de la parte cen-
tral. Como el frente de la onda siempre se propaga a veloci-
dad ¢, porque contiene las frecuencias mas altas y para éstas
todo medio es transparente, la informacidén nunca se propaga
a velocidad superior a c.

En las tecnologias de la informacién y comunicacion
actuales, la presencia o ausencia de pulsos codifica un bit y
la velocidad relevante es la de grupo. Este tipo de lectura del
pulso es de grano grueso, ya que no es sensible a la forma del
mismo. Nuestro andlisis anterior de la informacion conteni-
da en funciones de onda y pulsos, por el contrario, corres-
ponde a una lectura de grano fino. Al describir detallada-
mente el pulso intervienen distintas velocidades, y no sélo la
de grupo, y esto explica las paradojas que aparecen en
medios inusuales.

Por otro lado, hay muchas velocidades superiores a c.
Consideremos un faro que da una vuelta por segundo cuyo
haz es un laser que proyecta un punto luminoso sobre una
pantalla circular situada a 300.000 km de distancia. El punto
luminoso recorrerd toda la pantalla en un segundo, des-
plazandose por lo tanto a una velocidad superior a 6¢. Lo que
ocurre es que ni la energia ni la informacion se desplazan
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tangencialmente, sino que lo hacen radialmente a velocidad
c. 'Y esto es el mensaje de este capitulo: la energia y la infor-
macidén nunca pueden propagarse a velocidad superior a la
de la luz en el vacio; si lo hicieran habria violacion de cau-
salidad, para algunos observadores los efectos ocurririan
antes que las causas y deberiamos revisar a fondo las ideas
mas basicas de la fisica. Como precisamente dijo Einstein:
afirmaciones extraordinarias requieren razones extraordina-
rias. Estas razones no existen en la actualidad.

4. Estados puros. Medidas

La descripcion del estado de un sistema fisico en el
marco de la mecéanica cudntica la denominaremos estado
cuantico y es su concepto mas basico. Un estado cudntico
describe lo que conocemos sobre un sistema dado y tiene por
ello una componente objetiva y otra subjetiva. De momento
nos referiremos a estados puros, aquellos que describen un
sistema sobre el que tenemos el maximo conocimiento posi-
ble y por lo tanto representan una descripcion completa de é1.
Queremos dejar claro que siempre que hablemos de “estado”
queremos decir “descripcion del estado del sistema fisico en
el marco de la mecanica cuantica’ y por lo tanto nos declara-
mos incompetentes para hablar de lo que le ocurre “realmen-
te’ al sistema fisico.

Uno de los aspectos mas importantes de la mecanica
cuantica es que estados diferentes no siempre (en realidad
casi nunca) son perfectamente distinguibles. Por el contrario,
en la mecanica clasica estados diferentes de un sistema son,
por definicion, distinguibles. Dos estados son distinguibles
si existe una medida que con absoluta certeza nos dice si es
uno u otro. Por ejemplo:

e Polarizacion del foton: vertical | ) u horizontal [<>).

e Posicion de un atomo: en x=a, |a), enx=>b, |b), en x=c,
[e), ...

e Espin del electron: hacia arriba |T ) o hacia abajo |3 ).

e Energia de una molécula: en el estado fundamental |f) o
en un estado excitado |e,), |e,),...

e Numero de fotones: cero |0), uno |1), dos |2) ...

Los estados cuanticos puros son vectores de un espacio
de Hilbert. Cuando son istinguibles son ortogonales. La orto-
gonalidad se representa por { I |<>) = 0. La dimension de este
espacio viene dada por el nimero maximo de estados distin-
guibles, que depende del sistema fisico y de la magnitud fisi-
ca considerados, como se ha visto en los ejemplos dados ut
supra. En este articulo, para simplificar la exposicion, consi-
deraremos esencialmente la polarizacion de los fotones, que
se describe en un espacio de dos dimensiones, aunque una
descripcion completa de ellos requiera incluir ademas algu-
na otra magnitud como la posicion, el momento lineal o la
energia.

En un espacio de Hilbert, si dos estados de un sistema
fisico son posibles, también es posible cualquier superposi-
cion lineal de los mismos. Este hecho tiene consecuencias
importantes. Algunas superposiciones nos parecen “norma-
les”, porque son faciles de realizar o porque se dan frecuen-
temente en el microcosmos. En cambio, cuando estas super-
posiciones ocurren en sistemas de mayor tamafo, nos pare-
cen “sorprendentes”, aunque desde el punto de vista
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matematico no haya ninguna diferencia con las anteriores.
Veamos algunos ejemplos de superposiciones normales:

e Polarizacién diagonal, |J) + |«<>) = |/), o circular, | ) +
i) =10).

Estados de posicion indefinida del &tomo de nitrégeno en
la molécula NHs, |a) + |a). Las dos posiciones corres-
ponden a la situacion del nitrégeno a un lado o a otro del
plano que forman los tres atomos de hidrégeno. éste no
es mas que el estado fundamental de esta molécula.
Espin del electrén en una direccion arbitraria, (0, m),
cos 0 [T) + et sin @ [1).

e Superposiciones de estados de energia, |f) &+ |e¢). Para el
atomo de nitrégeno de la molécula NH; éstas correspon-
den a estados localizados de posicion.

Estado coherente de un laser. Superposicion de 0+1+2+...
fotones.

Algunos ejemplos sorprendentes:

e Superposicion de dos estados de un unico ion de berilio
9Be* de una extension de unos 7 nm cada uno y separa-
dos una distancia de 80 nm, mas de 10 veces la extension
de cada estado individual.

e Difraccion de moléculas complejas debida a que el esta-
do de la molécula es superposicion de estados correspon-
dientes a trayectorias distintas. El grupo de Anton Zeilin-
ger en Viena ha observado experimentalmente la difrac-
cion de moléculas enormes como los fulerenos fluorados
(60 atomos de carbono y 48 de fluor, lo que supone una
masa de mas de 1600 atomos de hidrogeno) o incluso
moléculas biologicas como la porfirina (que forma parte
de la hemoglobina) [12]. Cuando se hacen pasar por una
red de difraccion se observan franjas de interferencia,
cuya explicacion solo puede ser que cada macromolécu-
la ha pasado “a la vez” por las distintas rendijas de la red
de difraccion. Hay que notar que la distancia entre rendi-
jas es aproximadamente 100 veces el tamafio tipico de
estas macromoléculas.

La superposicion de estados es la responsable de la no
distinguibilidad, que no tiene analogo clasico. El estado
|7y =1~2 (|3) + |<>), adecuadamente normalizado (/" |")
=1, es en parte |J) y en parte |<>). Debido a ello, y como
veremos, ninguna medida puede distinguir con certeza |/)
de |T), ya que no son ortogonales. Antes de continuar nues-
tra discusion es preciso dar un significado mas preciso de lo
que es una medida.

Una medida es un interrogatorio al que se somete un sis-
tema fisico. La medida pregunta al sistema en qué estado, de
entre un conjunto completo de estados distinguibles (ortogo-
nales), se encuentra. El sistema declarara encontrarse en uno
de ellos de acuerdo con una ley de probabilidad. Notemos,
no obstante, que el estado en que se encontraba el sistema
antes de la medida normalmente no es el que ha manifestado
estar. Podemos decir provocativamente que el sistema se
encontraba en todos y en ninguno de los estados distingui-
bles de la medida. La completitud asegura que la suma de
probabilidades de los posibles resultados de una medida sea
la unidad. Por ejemplo, una medida puede corresponder a la
pregunta: ;el estado es | ) o |«>)? Esta medida la represen-
taremos por H. También podemos preguntar ;el estado es |")
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0 |\)?, en este caso usamos como simbolo para la medida <&
Para el estado | J) una medida @ dara con el 100% de certe-
za que es | J). Si medimos € dara con 50% de probabilidad
|7}y con 50% de probabilidad |\), tal y como dice la regla
de Born para las probabilidades cuanticas:

P(70)= 1) -
p()= [t =5

Supongamos que sabemos que el foton esta en | ) o | /).
Para saber en cual de ambos estd realmente, hay que hacer
una medida, como por ejemplo B. Hemos visto que para |J)
obtenemos siempre | ), mientras que para | /) se obtiene con
la misma probabilidad 1/2 los estados | ) y |<>). Asi, si el
resultado es |<>) seguro que el foton estaba en |/). Por el
contrario, si el resultado es | ) no podemos conocer el esta-
do inicial del foton. Es facil convencerse de que ninguna
medida sera capaz de distinguirlos con certeza, incluso si se
dispone de varias copias idénticas del sistema. Esta carac-
teristica cuantica se puede usar para enviar informacion
cifrada de forma segura. De hecho ya se han construido pro-
totipos comerciales que realizan esta tarea [13].

5. Estados mezcla

Un estado puro describe un sistema cuantico sobre el que
tenemos el maximo conocimiento posible. Cuando el cono-
cimiento no es maximo el sistema esta descrito por un esta-
do mezcla o matriz densidad, que habitualmente se repre-
senta por p. Un estado mezcla puede aparecer como conse-
cuencia de nuestra (mayor o menor) ignorancia sobre como
ha sido preparado el sistema. También puede aparecer cuan-
do de una colectividad de sistemas fisicos idénticos, sobre
cuya distribucion de estados tenemos algun (o ningin) cono-
cimiento, extraemos uno cualquiera.?

Un estado representa siempre el conocimiento que tene-
mos sobre el sistema fisico. Si nos atenemos a esta defini-
cion muchas de las aparentes paradojas de la mecanica cuan-
tica desaparecen, pero habra que abandonar el prejuicio que
el estado cuantico es el sistema fisico. Por lo tanto, lo que
sabemos sobre la realidad, lo inico que cientificamente im-
porta, es subjetivo en cuanto depende de la informacion de la
que dispone el observador.

Analicemos la situacion descrita al final de la seccion
anterior, donde no sabemos si el estado es |J) o |/). Solo
sabemos que con probabilidad p, es el primero y con proba-
bilidad p,= 1 — p, es el segundo. La descripcion del sistema
ha de ser tal que nos permita incluir esta ignorancia. Esto se
puede expresar diciendo que la matriz densidad proyecta
sobre el espacio de |J) con probabilidad p, y andlogamente
para el segundo estado (si hubiese mas posibilidades éstas se
irian afiadiendo). El proyector sobre el espacio de un estado
|a) es una matriz que se denota por |a){a|. Asi pues el siste-
ma vendra descrito por:

F=F||$}{$|+F1 ||-(Z}{'-/;| (D

Esta descripcion esta aun mas justificada cuando calcula-
mos las probabilidades de los distintos resultados de una
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medida. Supongamos que medimos nuestro sistema cuantico
con el aparato € Las leyes elementales de la probabilidad
dictan que la probabilidad de obtener cada resultado sera

2 pl=pp (L) + P (W)
pIMN pl=pp (ML) + 2k (M7

Asi podemos extender la regla de Born para estados mez-
cla de Ia siguiente forma

P(15) =1 o = p WA + 2, [V
2N p) = (NN =2 [N+ 2 N7

si p viene dado por (1). Notemos que p es una matriz positi-
va (por lo tanto hermitica) y que tiene traza unidad, trp =1
(estas dos propiedades son analogas a las de las leyes de
probabilidad).

La descripcion del sistema cuédntico depende del conoci-
miento que tengamos sobre ¢l. En el caso que nos ocupa, si
no disponemos de ninguna informacion para favorecer que
el estado sea |J) sobre la opcion |/), es decir, si tenemos
completa ignorancia sobre las dos opciones, debemos asig-
nar p; = p, = 1/2. Una forma natural de asignar probabilida-
des en situaciones mas generales donde se tienen mas opcio-
nes y alguna informacion parcial viene dada por el principio
de Jaynes [14]: las probabilidades han de ser tales que
correspondan al maximo de entropia (de Shannon) compati-
ble con la informacion de la que se dispone, es decir al maxi-
mo posible de ignorancia a priori.

Una misma matriz densidad puede ser descompuesta de
muchas formas diferentes, excepto cuando representa un
estado puro. Con todas ellas, por la regla de Born, que no
sabe de descomposiciones, se obtendran las mismas proba-
bilidades para cualquier medida. Por lo tanto, las descompo-
siciones seran totalmente indistinguibles y por ende idénti-
cas. Solo en el caso de conocimiento maximo, es decir para
estados puros, la descomposicion es unica (tal y como se
podia esperar). Veamos algunos ejemplos para la matriz den-
sidad p dada por (1) con p; =p, = 1/2. La descomposicion en
términos de dos estados distinguibles, {y, y,) =0, es

p =301 0N v+ b o
donde

I

I
: |Wn.:}=m[|$}i|fﬂ

son los valores y estados propios de p. Una descomposicion
con mas de dos estados podria ser

2-4f2
4 |$

_2+\5

4

42

p:

y asi se pueden encontrar infinitas descomposiciones del
mismo estado cudntico. Desde un punto de vista clasico esta
multiplicidad de descomposiciones es sorprendente, ya que
se considera siempre que estados diferentes son distingui-
bles. En el marco de la mecanica cuantica, como toda la
informacidn estd contenida en la matriz densidad p, preten-

2En la siguiente seccidn veremos un tercer caso, quizas el mas relevante: cuando se describe una parte de un sistema compuesto.
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der distinguir sus diferentes descomposiciones no es mas que
una rémora de nuestro pensamiento clasico.

Observemos que en la descomposicion de p en estados
distinguibles A; > 0 y A; + A, =1 (esto es debido a que p es
una matriz positiva con tr p = 1). Por lo tanto, los valores A;
pueden ser interpretados como probabilidades. Ademas
como los estados ;) son distinguibles, el conjunto A; corres-
ponde a una ley de probabilidad clasica de la que podemos
calcular su entropia de Shannon, que en este caso se deno-
mina entropia de von Neumann, S(p) =—A, log, A, —2A, log, A,.
La entropia de von Neumann es el andlogo cudntico de la
entropia de Shannon y puede expresarse de forma general
independiente de la descomposicion de p como

o) =—tr[plog, o]

Notemos que la afirmacion (relativamente gratuita) que
encabeza esta seccion —un estado puro es aquel sobre el que
tenemos maximo conocimiento— esta ahora plenamente jus-
tificada. La matriz densidad correspondiente a un estado
puro sdlo tiene un valor propio no nulo, y que por lo tanto
vale uno. En este caso la entropia de von Neumann es S(p) =0,
es decir, ignorancia cero. En el otro extremo, un estado sobre
el que no tenemos ninguna informacion se describe con una
matriz densidad proporcional a la identidad. Para los sis-
temas de dos niveles discutidos hasta ahora esto significa
A =M\, =1/2 y una entropia maxima de S=1 bit. La entropia
de von Neumann al igual que la de Shannon es uno de los
conceptos fundamentales de la informacion cuantica.

Finalmente, otro aspecto interesante es como describen
un mismo sistema fisico diferentes observadores, a, B, v,...
que pueden tener diferente informacion sobre el sistema
—incluso alguno de ellos puede tener informacion maxima.
Cada observador describira el sistema con una matriz densi-
dad diferente: pe, pB, p7,... La pregunta natural que surge en
este contexto es: ;qué tienen en comin todas las descripcio-
nes posibles de un mismo sistema cuantico? Es decir, jcuan
arbitraria es p'? La respuesta es bastante intuitiva [15]: los
estados mezcla p«, pB, p7,..., tienen todos ellos al menos una
descomposicion en la que aparece un estado puro comun a
todas ellas. En particular, es imposible que dos observadores
describan el mismo sistema fisico con estados puros diferen-
tes, ya que en ese caso la descomposicion de la matriz den-
sidad es unica. Si lo hicieran, o no son honestos, o tienen
datos falseados, o no son buenos cientificos.

6. Sistemas compuestos. Correlaciones cuanticas

Los aspectos mas antiintuitivos de la mecénica cuantica
aparecen cuando se consideran sistemas con varias partes o
subsistemas. En este caso hablaremos de sistemas compues-
tos. Por ejemplo, supongamos que tenemos dos fotones sufi-
cientemente separados en el espacio de forma que un obser-
vador a s6lo mide sobre uno de ellos y otro observador 3
sobre el otro. Esta configuracion nos permite etiquetar con
los indices 4 y B cada uno de los fotones respectivamente.
Supongamos que estos dos fotones estan en estados de pola-
rizacion | ), y | ). Este sistema compuesto se describe con
el estado producto [y) =|T), | ). También podriamos tener
un estado producto | ), [<>)g 0 |7), [¢>)s, etc..

Es sabido que los fotones satisfacen la estadistica de
Bose-Einstein y por lo tanto su funcion de ondas deberia ser
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simétrica bajo el intercambio de las magnitudes correspon-
dientes a cada particula, en este caso las polarizaciones. Esto
no ocurre en los dos ultimos ejemplos. Ello, no obstante, no
representa un problema, ya que sélo tenemos en cuenta la
polarizacion y no otras magnitudes, como la posicion, que en
este caso se ha substituido por las etiquetas 4 y B asociadas
a los observadores locales a y 3. Una vez marcados los foto-
nes, asociandolos a sus observadores, se pueden tratar como
no idénticos.

Los estados producto también aparecen en la descripcion
integra de una sola particula con espin o polarizacion al afia-
dir otras magnitudes. Asi un fotdn polarizado verticalmente
y localizado en x =a se describe con |J) |a). Es cuando se
describen varias particulas idénticas de forma integra que se
debe tener en cuenta la simetrizacion (o antisimetrizacion si
satisfacen la estadistica de Fermi-Dirac) del estado.

El principio de superposicion nos dice que si dos estados
son posibles, cualquier combinacion lineal ha de ser posible.
En particular, puede haber un sistema descrito por el estado
puro

PREILXISICE N

Es facil comprobar que |y) no es estado producto y, por
lo tanto, ninguno de los fotones, por muy alejados que estén
uno del otro, admite una descripcion completa por separado,
es decir, no se puede asociar una polarizacion definida a cada
uno de ellos. En estas circunstancias se dice que los fotones
estan entrelazados y no admiten una descripcion local com-
pleta. Esta caracteristica exclusiva de la mecéanica cuantica
es consecuencia del hecho que el espacio de Hilbert de siste-
mas compuestos sea el producto tensorial del espacio de
Hilbert de cada parte. En la mecanica clasica los sistemas
compuestos se describen en un espacio producto cartesiano
de los espacios de fases de cada una de las partes. Asi la
dimension del espacio crece exponencialmente con el nume-
ro de partes en el caso cudntico y solo linealmente en el cla-
sico. Esta diferencia en el nimero de estados posibles junto
a la propiedad de entrelazamiento cuantico es lo que confie-
re a la mecanica cuantica su potencial computacional [16].

El estado (2) es un buen ejemplo para ilustrar gran parte
de las peculiaridades y paradojas que se dan en los sistemas
compuestos. Observemos, por ejemplo, que |y) también se
puede escribir como

- EL T, N

Al igual que en el caso de estados mezcla discutidos en la
seccidn anterior, nuestra mentalidad cldsica nos podria indu-
cir a intentar distinguir entre las descripciones (2) y (3). Es
un intento vano ya que el estado |y) es el mismo.

Analicemos ahora las medidas locales, es decir, las que se
realizan sobre una de las partes, y las consecuencias que de
ellas se puedan derivar. Supongamos que el observador a
realiza una medida local, es decir, sobre la parte A, con un
aparato M y obtiene el resultado | ). Esto ocurre con una
probabilidad del 50%. De la expresion (2) inferimos que si el
observador B midiese entonces la parte B con el aparato H
obtendria con certeza |{), aunque B, salvo que o le haya
informado, es ignorante de esta certeza. Si o hubiese obteni-
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do |«<>) (lo que ocurre con el otro 50% de probabilidad), 3
obtendria |«<>) con total certeza. El estado |y) correlaciona
perfectamente los resultados de estas medidas locales.
Notese que las mismas correlaciones entre estas medidas
locales se pueden obtener describiendo el sistema compues-
to con la matriz densidad

1 1
P = 2103, (EI), (Bl S, (oo, (o

que s6lo contiene correlaciones clasicas. La situacion es mas
interesante cuando consideramos otro aparato de medida,
por ejemplo €. Aqui podemos utilizar la representacién (3),
y deducir facilmente que si a obtiene | /') para 4, B obtiene
|”) para B con certeza, y andlogamente para un resultado en
la otra direcciéon ortogonal. De nuevo, se obtendrian los
mismos resultados si el sistema compuesto estuviese descrito
por el siguiente estado que solo contiene correlaciones clasicas:

po =30 NI, T 51, (9, (

Como pg < pg, las dos descripciones en términos de
correlaciones cldsicas son incompatibles entre ellas. Los
estados entrelazados presentan correlaciones que van mas
alla de las clasicas y que se denominan correlaciones cuanti-
cas. éstas se pueden describir mediante conjuntos de correla-
ciones clasicas, pero que no son compatibles entre si.

(Como describe su foton un observador local cuando
ignora la presencia del otro? El observador o puede suponer
que el observador B ha medido B con el aparato H. De la dis-
cusion anterior, la descripcion del subsistema A4 por parte del
observador o, que desconoce el resultado de la medida de 3, es

Pl =210, 31+ 51, o]

El observador a también podria suponer que 3 ha medi-
do con el aparato €. En este caso la descripcion local seria

p it =0, (1 23}, (o

Obsérvese, que pY; = po=T7/2, donde /' es la matriz
identidad. Para cualquier medida que realizara 3 la descrip-
cion local de A4 por parte de o seria siempre la misma, dada
por la matriz densidad p%. Como esta descripcién no debe
depender de lo que haga 3, debe ser también correcta cuan-
do B decide no medir. En el ejemplo estudiado, la matriz
densidad p¢% es proporcional a la identidad, y ya hemos visto
en la seccion anterior que corresponde a maxima ignorancia,
es decir, que la entropia de von Neumann, S(p¢%.), es 1 bit.
Por otro lado, el estado inicial |y) es puro y por lo tanto de
entropia nula, S(jy) {y|) = 0. Como es de esperar, toda la
informacion contenida en las correlaciones cuanticas de |y)
se ha perdido irremediablemente al hacer una descripcion
local. Esta pérdida objetiva de informacién contrasta con la
ignorancia subjetiva que contenian las matrices densidad
analizadas en la seccion anterior. Sin embargo, la mecanica
cuantica trata por igual cualquier tipo de ignorancia, ya que
toda la informacion, y solo ésta, esta contenida en la matriz
densidad. La formula general para describir localmente una
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parte 4 de un sistema compuesto descrito por una matriz
densidad p y que resume toda la discusion anterior es

A=t “4)

donde la traza se realiza sobre el subespacio B. La interpre-
tacion es sencilla: ignorar la parte B corresponde a sumar
sobre todos los posibles resultados de medidas en B pesados
con sus correspondientes probabilidades, y esto equivale a
hacer la traza sobre el subespacio B.

Otra pregunta interesante es ;como describe un observa-
dor el otro subsistema? Antes de medir, el observador 3 des-
cribe el subsistema A por la misma expresion (4), que para el
estado (2) es

,Dj =i o= g (5)

Esto se sigue, mutatis mutandis, por un razonamiento
andlogo al que ha conducido a (4). Si § mide un observable
local y obtiene un determinado resultado, automaticamente
sabe cual es el estado de la parte 4. En el caso que B mida B
y obtenga |J), el estado del subsistema A colapsa a |J), por
muy separados que estén los dos subsistemas, es decir,

1
7 =tp==. (6)

Al medir, el observador  cambia drasticamente su des-
cripcion de la parte 4, que pasa de ser una matriz densidad
de maxima entropia (5) a un estado puro (6), que tiene
entropia cero. Este colapso instantaneo’ y a distancia, sin
medir sobre el subsistema, es sorprendente y explica la inco-
modidad de Einstein (“... spooky action at a distance...”). La
pregunta que nos planteamos ahora es si sirve para transmi-
tir informacion de forma instantanea. Esto, mas que sorpren-
dente, como veremos, seria preocupante.

7. Transmision de informacion. Conclusiones

La medida efectuada por B, discutida en el parrafo ante-
rior, daba como resultado el estado puro p'P. Efectivamente,
si el observador o midiese con B obtendria |J). Esta medida
parece proporcionar a o informacion sobre el colapso causa-
do por la medida de B y, por lo tanto, se podria pensar en la
posibilidad de comunicacion superluminica.

Asi B podria transmitir instantaneamente un bit de infor-
macion asociando el valor 0 a | ) y el 1a |«>). Obviamente
esto no es posible por el caracter aleatorio de los resultados
de la medida en B, que hace imposible que cuando 3 quiera
enviar el valor 0 el resultado de su medida sea | ) con segu-
ridad. De esta forma [3 s6lo envia ruido, pero no informacion.

Lo que si puede controlar 3 es qué medida realiza. Por lo
tanto podria asociar 0 a la medida By 1 a la medida <€ Sia
pudiese discriminar entre los dos conjuntos de estados {| ),
|<>)} (que resultan de la medida BB en B) y {|<), |\)} (que
resultan de la medida € en B), efectivamente habria trans-
mision instantdnea de un bit de informacion. Pero esto no es
posible ya que, como vimos en la seccion anterior, la des-
cripcién local p9% es independiente de lo que decida hacer 3.
Por ello ninguna medida local de o permite adquirir la infor-
macién que 3 pretendia transmitir.

3Recientemente se ha medido la velocidad a la que se produce el colapso, y se ha obtenido [17] una cota inferior de 1.5 x 104 ¢ en el sistema de referen-

cia de la radiacion de fondo.
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Informacién, entrelazamiento y relatividad

Finalmente discutiremos un método que podria desafiar
el limite relativista de transmision de informacion: el tele-
transporte cudntico [18]. No haremos una exposicion deta-
llada del mismo, que requeriria mucho mas espacio del que
disponemos aqui, pero si presentaremos los aspectos mas
relevantes. El teletransporte cuantico permite hacer desapa-
recer un estado cuantico de un lugar A para hacerlo aparecer
en otro arbitrariamente separado del primero B de forma
intacta (en condiciones ideales), sin que haya mediado un
transporte material del sistema fisico. Para ello, dos observa-
dores, a y B, han de compartir un estado maximamente
entrelazado como (2). El observador a realiza una medida
conjunta de su parte del estado entrelazado y del que preten-
de teletransportar y comunica el resultado de su medida a 3.
Con esta informacion 3 puede reconstruir de forma exacta el
estado que tenia a. Este resultado puede parecer turbador,
pero no es mas que el reflejo de las propiedades ciertamente
antiintuitivas de la mecéanica cuantica. El motivo de fondo es
el entrelazamiento del estado que comparten los observado-
res y la no-localidad del mismo. Sin embargo, de nuevo, no
hay forma de realizar una transmision superluminica: el
observador a debe comunicar el resultado de su medida a 8
y esta informacion debe viajar con un soporte fisico, y por lo
tanto no puede hacerlo a velocidades superiores a la de la
luz. Antes de que llegue esta informacion, la descripcion del
observador 3 de su estado sera una matriz densidad propor-
cional a la identidad como (2), es decir, la correspondiente a
maxima ignorancia. S6lo cuando le llega la informacion de
o podra reconstruir el estado y completar el fenomeno del
teletransporte.

Si el marco de la mecdnica cuantica hubiese permitido la
transmision instantanea de informacion, ésta no hubiese ser-
vido de punto de partida para su version relativista, la teoria
cuantica de campos. La mecanica cuantica, informacion y
relatividad se relacionan de tal manera, que ninguna de ellas
parece poner en peligro los principios de las otras. Como
dice el premio Nobel Stephen Weinberg [19]: la fisica es de
una estructura asombrosamente rigida, no se puede alterar
una parte sin tener que cambiarlo todo. De momento, no
parece que haya motivos para cambiar, y si para seguir
explorando las interrelaciones entre estas teorias, que nos
estan permitiendo descubrir las posibilidades y las limitacio-
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nes de la informacion en la fisica y de la fisica de la infor-
macion. La duda que nos queda es si los rasgos subjetivos de
la mecanica cuantica discutidos en este articulo, de connota-
ciones antropocéntricas, impiden que ésta sea el punto de
partida de una teoria final, o si son precisamente estos rasgos
los que le permitirian serlo.

Agradecemos los valiosos comentarios y sugerencias de
nuestros colegas Antonio Acin, Emili Bagan, Albert Bra-
mon, Lluis Garrido, David Jou, Lluis Masanes, Roman Orts,
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