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1. Introducción
La física cuántica y la relatividad especial nacieron a

principios del siglo pasado, en 1900 de la mano de Max
Planck la primera y en 1905 de la mano de Albert Einstein la
segunda, para dar respuesta a fenómenos inexplicables en el
marco de la física clásica. El mismo Einstein sentó en 1905
las bases de lo que sería uno de los conceptos más sutiles y
fructíferos de la física del siglo XX: el fotón o partícula de
luz. En 1948, en los laboratorios Bell de la compañía de telé-
fonos de los EEUU, se desarrolló la teoría de la información
y de la comunicación. ésta también fue la creación de una
sola persona: el matemático e ingeniero Claude Shannon [1].

La interfertilización de estas tres teorías es el tema de este
artículo que expondremos intentando seguir una máxima de
Einstein: las explicaciones deben ser tan sencillas como sea
posible, pero no más sencillas.

Con el paso del tiempo se entendió que la descripción
cuántica de los estados en que se encuentran los sistemas
físicos es la forma matemáticamente más compacta de resu-
mir la información que tenemos sobre ellos. Como dijo
Rudolf Peierls, “In my view the most fundamental statement
of quantum mechanics is that the wave function or, more
generally the density matrix, represents our knowledge of the
system we are trying to describe” [2]. La medida cuántica
produce, al aumentar o actualizar nuestro conocimiento, una
modificación instantánea de esta descripción cuántica del
estado: el llamado colapso de la función de onda. Como las
funciones de onda son extensas, su modificación instantánea
podría hacer pensar que la información que contienen se pro-
paga instantáneamente, ya que la función de onda post-medi-
da puede ser no nula donde antes de la medida lo era. El pro-
blema se agudizó cuando a partir del trabajo conocido como
la paradoja de Einstein, Podolsky y Rosen (EPR) de 1935 [3]
se comprendió que las correlaciones cuánticas o entrelaza-
miento, descritas magistralmente ese mismo año por Erwin
Schrödinger [4], permitían modificar instantáneamente y a
distancia el estado de un sistema físico con sólo medir sobre
otro sistema físico entrelazado con el primero.

La teoría especial de la relatividad consagró la velocidad
de la luz en el vacío, c ≈ 300.000 km/s, que también es la de
todas las ondas electromagnéticas, como una velocidad lími-
te para las partículas materiales y por tanto como la máxima
velocidad con la que se puede propagar la energía. Más
tarde, y como le gustaba insistir a Rolf Landauer (“informa-
tion is physical”) [5], se entendió que la información siem-
pre se propaga sobre un soporte energético y que por lo tanto
tampoco puede hacerlo a velocidad superior a c.

Parece pues haber una contradicción entre la acción a dis-
tancia, es decir, instantánea, de la mecánica cuántica y el
tiempo finito que, según la relatividad especial, necesita la

información para recorrer la distancia que separa la causa del
efecto cuando éstos ocurren en lugares distintos. Veremos
que no es así, la información no se propaga instantáneamen-
te en el marco cuántico y esto es debido a que la información
es subjetiva, la adquiere el físico observador en el momento
de la medida, y aunque se refiera a un objeto distante, como
ocurre cuando hay correlaciones cuánticas, la información
no ha viajado de este objeto distante hasta el observador.
Para otro observador, asociado al objeto distante, nada ha
cambiado, nada ha aprendido y ninguna información le ha
llegado instantáneamente.

2. Información
La palabra información se asocia a veces al concepto

“significado”. La información como significado es muy difí-
cil de cuantificar. En el prólogo al libro que contiene el artí-
culo de Shannon publicado un año antes, Warren Weaver
dice lo siguiente: “One has a vague feeling that information
and meaning may prove to be something like a pair of cano-
nically conjugate variables in quantum theory, they being
subject to some joint restriction that condemns a person to
sacrifice of the one as he insists of having much of the other”
[6]1. El concepto de información introducido por Shannon es
el de medida de la sorpresa. Por ejemplo, si decimos “el Sol
saldrá mañana”, es una frase con muy poca o nula informa-
ción: no se aprende nada. En cambio, la sentencia “el Sol no
saldrá mañana”, es muy sorprendente y por lo tanto contiene
una gran cantidad de información. La medida de la informa-
ción será, según ello, una función de las probabilidades.

Supongamos que cierto suceso S ocurre con probabilidad
p(S) y llamemos I(S) al contenido de información del suceso
S. ¿Qué propiedades debería cumplir I(S)? Los siguientes
requisitos son de sentido común: (i) si un suceso S1 ocurre
con menor probabilidad que otro S2 [p(S1) ≤ p(S2)] entonces
S1 contiene más información (es más sorprendente) que S2, es
decir, I(S1) ≥ I(S2); (ii) si S1 y S2 son sucesos independientes
[p(S1 ∩S2) = p(S1) p(S2)], la información contenida en ambos
sucesos debería ser la suma I(S1 ∪ S2) = I(S1) + I(S2); y (iii) un
suceso cualquiera siempre contiene algo de información
(salvo que su ocurrencia fuese inevitable) I(S) ≥ 0, ∀S. Estas
tres propiedades prácticamente determinan que la única solu-
ción sea I(S)∝ − log[p(S)]. La constante de proporcionalidad
se puede elegir de forma que I(S) =− log2[p(S)]. La unidad de
información con esta elección es el bit. Por ejemplo, si tene-
mos dos sucesos excluyentes {S1, S2} que pueden ocurrir con
la misma probabilidad p(S1) = p(S2) = 1/2, entonces la infor-
mación contenida en cada uno de ellos es un bit, I(S1) = I(S2)
= 1. Si el conjunto es de cuatro sucesos equiprobables, cada
uno de ellos contiene 2 bits de información.
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Si los sucesos no son equiprobables, obviamente el con-
tenido de información de cada suceso será diferente. En
general estaremos interesados en el promedio de informa-
ción adquirida. La entropía de Shannon es precisamente este
promedio y es el concepto fundamental de la teoría de la
información. Específicamente, si los sucesos corresponden
a una variable aleatoria X, y los etiquetamos por X = x1, ...,X
= xn y a sus correspondientes probabilidades por {p1,..., pn},
la entropía de Shannon es

Para hacernos una idea del significado de esta función,
supongamos que los sucesos corresponden a las diferentes
letras {a,b,c,...} de un mensaje (conjunto de letras) que se
envía por un cierto canal de transmisión y sabemos que cada
letra aparece con cierta probabilidad. La entropía de
Shannon H(X) nos da la información promedio que se trans-
mite por cada letra que se envía. En el idioma inglés es apro-
ximadamente 1 bit por letra transmitida (un valor parecido es
de esperar en castellano). Es fácil ver que el máximo de la
entropía de Shannon, H(X), ocurre si todas las probabilida-
des son iguales p1 = p2 = ... = pn, que para el inglés o caste-
llano correspondería a unos 4.7 bits por letra transmitida.
Estos idiomas son redundantes en aproximadamente un
80%. Por eso nos entendemos a pesar de lo mal que habla-
mos y podemos almacenar y transmitir los textos de forma
comprimida, es decir de forma cmprmd. En el caso opuesto,
si un suceso tiene probabilidad uno y el resto cero, la
entropía de Shannon es cero. En efecto, no hay ninguna sor-
presa en el hecho de que ocurra un suceso que sabemos que
tiene un 100% de probabilidad de ocurrir.

3. Luz e información
En el marco de la relatividad especial la aceleración pro-

ducida por una fuerza constante que actúa sobre una partícu-
la de masa no nula tiende hacia cero a medida que la veloci-
dad se acerca a la velocidad de la luz en el vacío, c, y la
energía necesaria para alcanzar c se hace infinita. En otras
palabras, toda partícula material se propaga con una veloci-
dad inferior a c. Además esto es así en cualquier sistema de
referencia, aunque los valores concretos de la velocidad y
energía de la partícula varíen de un sistema a otro. Las ondas
electromagnéticas, por otro lado, se propagan en el vacío a la
velocidad c, en todos los sistemas de referencia. Como al
transmitir una información utilizamos partículas u ondas
electromagnéticas, se sigue que la información, al igual que
la energía que transporta la partícula o la onda electro-
magnética, no puede propagarse a velocidad superior a la de
la luz en el vacío.

En el marco de la mecánica cuántica las partículas mate-
riales tienen asociada una onda que representa su estado
cuántico en el espacio. Las ondas electromagnéticas se des-
criben en función de los fotones, partículas sin masa que
corresponden a los estados de energía mínima, hν, de una
onda electromagnética de frecuencia ν, o, como veremos
más adelante, a cualquier superposición de estos estados de
energía bien definida. h es la constante de Planck, cuyo valor
es tan pequeño que harían falta más de 10 trillones de foto-
nes de color amarillo para calentar un gramo de agua un

grado. Tal como ocurre con las partículas materiales, los
estados de fotones suficientemente localizados, llamados
pulsos, también se representan por una onda en el espacio,
que en el vacío se propaga con velocidad c. Si consideramos
la propagación en una sola dimensión, como todas las fre-
cuencias se propagan con la misma velocidad c, la onda no
modifica su forma y la velocidad de grupo, que podemos
interpretar como la velocidad del máximo de la onda, tam-
bién es c.

Cuando consideramos la propagación de una partícula u
onda en un medio, asociarle una velocidad es mucho más
ambiguo que en el caso de una partícula clásica. Esto es
debido a que las distintas frecuencias se propagan con dis-
tintas velocidades, por lo que la onda cambia de forma.
Normalmente es la velocidad de grupo la que tiene las carac-
terísticas de velocidad física y en circunstancias normales no
supera a c. La información continúa propagándose a veloci-
dades que no superan a la de la luz en el vacío [7]. Sin
embargo, cuando el medio es inusual pueden pasar cosas sor-
prendentes [8]. Así en el año 2000 Wang, Kuzmich y Doga-
riu dicen en el resumen de un artículo muy discutido y
comentado que publicaron en Nature [9]: “...this means that
a light pulse propagating through the atomic vapour cell
appears at the exit side so much earlier than if it had propa-
gated the same distance in a vacuum that the peak of the
pulse appears to leave the cell before entering it”. Los auto-
res afirman que este resultado no viola causalidad ni la rela-
tividad especial, y lo explican como la consecuencia de un
fenómeno de interferencia en una región de dispersión anó-
mala. La explicación defendida por Charles Bennett, aunque
rechazada por los autores, es una ya conocida desde hacía
tiempo y se basa en una amplificación de los precursores del
pulso (el frente de la onda de pequeña amplitud pero que
contiene toda la información del pulso) [10]. Esta amplifica-
ción es posible gracias a una cesión temporal de energía por
parte del medio, que posteriormente recupera cuando llega la
parte central del pulso (de gran amplitud). Esto último suce-
de cuando ya han emergido del medio los precursores ampli-
ficados y que tienen todas las características de la parte cen-
tral. Como el frente de la onda siempre se propaga a veloci-
dad c, porque contiene las frecuencias más altas y para éstas
todo medio es transparente, la información nunca se propaga
a velocidad superior a c.

En las tecnologías de la información y comunicación
actuales, la presencia o ausencia de pulsos codifica un bit y
la velocidad relevante es la de grupo. Este tipo de lectura del
pulso es de grano grueso, ya que no es sensible a la forma del
mismo. Nuestro análisis anterior de la información conteni-
da en funciones de onda y pulsos, por el contrario, corres-
ponde a una lectura de grano fino. Al describir detallada-
mente el pulso intervienen distintas velocidades, y no sólo la
de grupo, y esto explica las paradojas que aparecen en
medios inusuales.

Por otro lado, hay muchas velocidades superiores a c.
Consideremos un faro que da una vuelta por segundo cuyo
haz es un láser que proyecta un punto luminoso sobre una
pantalla circular situada a 300.000 km de distancia. El punto
luminoso recorrerá toda la pantalla en un segundo, des-
plazándose por lo tanto a una velocidad superior a 6c. Lo que
ocurre es que ni la energía ni la información se desplazan
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tangencialmente, sino que lo hacen radialmente a velocidad
c. Y esto es el mensaje de este capítulo: la energía y la infor-
mación nunca pueden propagarse a velocidad superior a la
de la luz en el vacío; si lo hicieran habría violación de cau-
salidad, para algunos observadores los efectos ocurrirían
antes que las causas y deberíamos revisar a fondo las ideas
más básicas de la física. Como precisamente dijo Einstein:
afirmaciones extraordinarias requieren razones extraordina-
rias. Estas razones no existen en la actualidad.

4. Estados puros. Medidas
La descripción del estado de un sistema físico en el

marco de la mecánica cuántica la denominaremos estado
cuántico y es su concepto más básico. Un estado cuántico
describe lo que conocemos sobre un sistema dado y tiene por
ello una componente objetiva y otra subjetiva. De momento
nos referiremos a estados puros, aquellos que describen un
sistema sobre el que tenemos el máximo conocimiento posi-
ble y por lo tanto representan una descripción completa de él.
Queremos dejar claro que siempre que hablemos de “estado”
queremos decir `descripción del estado del sistema físico en
el marco de la mecánica cuántica’ y por lo tanto nos declara-
mos incompetentes para hablar de lo que le ocurre `realmen-
te’ al sistema físico.

Uno de los aspectos más importantes de la mecánica
cuántica es que estados diferentes no siempre (en realidad
casi nunca) son perfectamente distinguibles. Por el contrario,
en la mecánica clásica estados diferentes de un sistema son,
por definición, distinguibles. Dos estados son distinguibles
si existe una medida que con absoluta certeza nos dice si es
uno u otro. Por ejemplo:

• Polarización del fotón: vertical |b〉 u horizontal |↔〉.
• Posición de un átomo: en x= a, |a〉, en x= b, |b〉, en x= c,
|c〉,...

• Espín del electrón: hacia arriba |↑ 〉 o hacia abajo |↓〉.
• Energía de una molécula: en el estado fundamental | f〉 o
en un estado excitado |e1〉, |e2〉,...

• Número de fotones: cero |0〉, uno |1〉, dos |2〉 ...

Los estados cuánticos puros son vectores de un espacio
de Hilbert. Cuando son istinguibles son ortogonales. La orto-
gonalidad se representa por 〈b |↔〉 = 0. La dimensión de este
espacio viene dada por el número máximo de estados distin-
guibles, que depende del sistema físico y de la magnitud físi-
ca considerados, como se ha visto en los ejemplos dados ut
supra. En este artículo, para simplificar la exposición, consi-
deraremos esencialmente la polarización de los fotones, que
se describe en un espacio de dos dimensiones, aunque una
descripción completa de ellos requiera incluir además algu-
na otra magnitud como la posición, el momento lineal o la
energía.

En un espacio de Hilbert, si dos estados de un sistema
físico son posibles, también es posible cualquier superposi-
ción lineal de los mismos. Este hecho tiene consecuencias
importantes. Algunas superposiciones nos parecen “norma-
les”, porque son fáciles de realizar o porque se dan frecuen-
temente en el microcosmos. En cambio, cuando estas super-
posiciones ocurren en sistemas de mayor tamaño, nos pare-
cen “sorprendentes”, aunque desde el punto de vista

matemático no haya ninguna diferencia con las anteriores.
Veamos algunos ejemplos de superposiciones normales:

• Polarización diagonal, |b〉 + |↔〉 = |g〉, o circular, |b〉 +
i |↔〉 = |�〉.

• Estados de posición indefinida del átomo de nitrógeno en
la molécula NH3, |a 〉 + |a 〉. Las dos posiciones corres-
ponden a la situación del nitrógeno a un lado o a otro del
plano que forman los tres átomos de hidrógeno. éste no
es mas que el estado fundamental de esta molécula.

• Espín del electrón en una dirección arbitraria, (θ, π),
cos θ |↑〉 + eiφ sin θ |↓〉 .

• Superposiciones de estados de energía, | f〉 ± |e〉. Para el
átomo de nitrógeno de la molécula NH3 éstas correspon-
den a estados localizados de posición.

• Estado coherente de un láser. Superposición de 0+1+2+...
fotones.

Algunos ejemplos sorprendentes:
• Superposición de dos estados de un único ion de berilio

9Be+ de una extensión de unos 7 nm cada uno y separa-
dos una distancia de 80 nm, más de 10 veces la extensión
de cada estado individual.

• Difracción de moléculas complejas debida a que el esta-
do de la molécula es superposición de estados correspon-
dientes a trayectorias distintas. El grupo de Anton Zeilin-
ger en Viena ha observado experimentalmente la difrac-
ción de moléculas enormes como los fulerenos fluorados
(60 átomos de carbono y 48 de flúor, lo que supone una
masa de más de 1600 átomos de hidrógeno) o incluso
moléculas biológicas como la porfirina (que forma parte
de la hemoglobina) [12]. Cuando se hacen pasar por una
red de difracción se observan franjas de interferencia,
cuya explicación sólo puede ser que cada macromolécu-
la ha pasado “a la vez” por las distintas rendijas de la red
de difracción. Hay que notar que la distancia entre rendi-
jas es aproximadamente 100 veces el tamaño típico de
estas macromoléculas.

La superposición de estados es la responsable de la no
distinguibilidad, que no tiene análogo clásico. El estado
|g〉 = 1/√

–
2 (|b〉 + |↔〉, adecuadamente normalizado 〈g |g〉

= 1, es en parte |b〉 y en parte |↔〉. Debido a ello, y como
veremos, ninguna medida puede distinguir con certeza |g〉
de |b〉, ya que no son ortogonales. Antes de continuar nues-
tra discusión es preciso dar un significado más preciso de lo
que es una medida.

Una medida es un interrogatorio al que se somete un sis-
tema físico. La medida pregunta al sistema en qué estado, de
entre un conjunto completo de estados distinguibles (ortogo-
nales), se encuentra. El sistema declarará encontrarse en uno
de ellos de acuerdo con una ley de probabilidad. Notemos,
no obstante, que el estado en que se encontraba el sistema
antes de la medida normalmente no es el que ha manifestado
estar. Podemos decir provocativamente que el sistema se
encontraba en todos y en ninguno de los estados distingui-
bles de la medida. La completitud asegura que la suma de
probabilidades de los posibles resultados de una medida sea
la unidad. Por ejemplo, una medida puede corresponder a la
pregunta: ¿el estado es |b〉 o |↔〉? Esta medida la represen-
taremos por�. También podemos preguntar ¿el estado es |g〉
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o |h〉?, en este caso usamos como símbolo para la medida�×.
Para el estado |b〉 una medida � dará con el 100% de certe-
za que es |b〉. Si medimos�× dará con 50% de probabilidad
|g〉 y con 50% de probabilidad |h〉, tal y como dice la regla
de Born para las probabilidades cuánticas:

Supongamos que sabemos que el fotón está en |b〉 o |g〉.
Para saber en cual de ambos está realmente, hay que hacer
una medida, como por ejemplo �. Hemos visto que para |b〉
obtenemos siempre |b〉, mientras que para |g〉 se obtiene con
la misma probabilidad 1/2 los estados |b〉 y |↔〉. Así, si el
resultado es |↔〉 seguro que el fotón estaba en |g〉. Por el
contrario, si el resultado es |b〉 no podemos conocer el esta-
do inicial del fotón. Es fácil convencerse de que ninguna
medida será capaz de distinguirlos con certeza, incluso si se
dispone de varias copias idénticas del sistema. Esta carac-
terística cuántica se puede usar para enviar información
cifrada de forma segura. De hecho ya se han construido pro-
totipos comerciales que realizan esta tarea [13].

5. Estados mezcla
Un estado puro describe un sistema cuántico sobre el que

tenemos el máximo conocimiento posible. Cuando el cono-
cimiento no es máximo el sistema está descrito por un esta-
do mezcla o matriz densidad, que habitualmente se repre-
senta por ρ. Un estado mezcla puede aparecer como conse-
cuencia de nuestra (mayor o menor) ignorancia sobre cómo
ha sido preparado el sistema. También puede aparecer cuan-
do de una colectividad de sistemas físicos idénticos, sobre
cuya distribución de estados tenemos algún (o ningún) cono-
cimiento, extraemos uno cualquiera.2

Un estado representa siempre el conocimiento que tene-
mos sobre el sistema físico. Si nos atenemos a esta defini-
ción muchas de las aparentes paradojas de la mecánica cuán-
tica desaparecen, pero habrá que abandonar el prejuicio que
el estado cuántico es el sistema físico. Por lo tanto, lo que
sabemos sobre la realidad, lo único que científicamente im-
porta, es subjetivo en cuanto depende de la información de la
que dispone el observador.

Analicemos la situación descrita al final de la sección
anterior, donde no sabemos si el estado es |b〉 o |g〉. Sólo
sabemos que con probabilidad p1 es el primero y con proba-
bilidad p2 = 1 – p1 es el segundo. La descripción del sistema
ha de ser tal que nos permita incluir esta ignorancia. Esto se
puede expresar diciendo que la matriz densidad proyecta
sobre el espacio de |b〉 con probabilidad p1 y análogamente
para el segundo estado (si hubiese más posibilidades éstas se
irían añadiendo). El proyector sobre el espacio de un estado
|a〉 es una matriz que se denota por |a〉 〈a|. Así pues el siste-
ma vendrá descrito por:

(1)

Esta descripción está aún más justificada cuando calcula-
mos las probabilidades de los distintos resultados de una

medida. Supongamos que medimos nuestro sistema cuántico
con el aparato �×. Las leyes elementales de la probabilidad
dictan que la probabilidad de obtener cada resultado será

Así podemos extender la regla de Born para estados mez-
cla de la siguiente forma

si ρ viene dado por (1). Notemos que ρ es una matriz positi-
va (por lo tanto hermítica) y que tiene traza unidad, tr ρ = 1
(estas dos propiedades son análogas a las de las leyes de
probabilidad).

La descripción del sistema cuántico depende del conoci-
miento que tengamos sobre él. En el caso que nos ocupa, si
no disponemos de ninguna información para favorecer que
el estado sea |b〉 sobre la opción |g〉, es decir, si tenemos
completa ignorancia sobre las dos opciones, debemos asig-
nar p1 = p2 = 1/2. Una forma natural de asignar probabilida-
des en situaciones más generales donde se tienen más opcio-
nes y alguna información parcial viene dada por el principio
de Jaynes [14]: las probabilidades han de ser tales que
correspondan al máximo de entropía (de Shannon) compati-
ble con la información de la que se dispone, es decir al máxi-
mo posible de ignorancia a priori.

Una misma matriz densidad puede ser descompuesta de
muchas formas diferentes, excepto cuando representa un
estado puro. Con todas ellas, por la regla de Born, que no
sabe de descomposiciones, se obtendrán las mismas proba-
bilidades para cualquier medida. Por lo tanto, las descompo-
siciones serán totalmente indistinguibles y por ende idénti-
cas. Sólo en el caso de conocimiento máximo, es decir para
estados puros, la descomposición es única (tal y como se
podía esperar). Veamos algunos ejemplos para la matriz den-
sidad ρ dada por (1) con p1 = p2 = 1/2. La descomposición en
términos de dos estados distinguibles, 〈ψ1 ψ2〉 = 0, es

donde

son los valores y estados propios de ρ. Una descomposición
con más de dos estados podría ser

y así se pueden encontrar infinitas descomposiciones del
mismo estado cuántico. Desde un punto de vista clásico esta
multiplicidad de descomposiciones es sorprendente, ya que
se considera siempre que estados diferentes son distingui-
bles. En el marco de la mecánica cuántica, como toda la
información está contenida en la matriz densidad ρ, preten-

2En la siguiente sección veremos un tercer caso, quizás el más relevante: cuando se describe una parte de un sistema compuesto.



der distinguir sus diferentes descomposiciones no es más que
una rémora de nuestro pensamiento clásico.

Observemos que en la descomposición de ρ en estados
distinguibles λi ≥ 0 y λ1 + λ2 = 1 (esto es debido a que ρ es
una matriz positiva con tr ρ = 1). Por lo tanto, los valores λi
pueden ser interpretados como probabilidades. Además
como los estados |ψi〉 son distinguibles, el conjunto λi corres-
ponde a una ley de probabilidad clásica de la que podemos
calcular su entropía de Shannon, que en este caso se deno-
mina entropía de von Neumann, S(ρ) = –λ1 log2 λ1 –λ2 log2 λ2.
La entropia de von Neumann es el análogo cuántico de la
entropía de Shannon y puede expresarse de forma general
independiente de la descomposición de ρ como

Notemos que la afirmación (relativamente gratuita) que
encabeza esta sección –un estado puro es aquel sobre el que
tenemos máximo conocimiento– está ahora plenamente jus-
tificada. La matriz densidad correspondiente a un estado
puro sólo tiene un valor propio no nulo, y que por lo tanto
vale uno. En este caso la entropia de von Neumann es S(ρ) =0,
es decir, ignorancia cero. En el otro extremo, un estado sobre
el que no tenemos ninguna información se describe con una
matriz densidad proporcional a la identidad. Para los sis-
temas de dos niveles discutidos hasta ahora esto significa
λ1 = λ2 = 1/2 y una entropía máxima de S = 1 bit. La entropía
de von Neumann al igual que la de Shannon es uno de los
conceptos fundamentales de la información cuántica.

Finalmente, otro aspecto interesante es cómo describen
un mismo sistema físico diferentes observadores, α, β, γ,...
que pueden tener diferente información sobre el sistema
–incluso alguno de ellos puede tener información máxima.
Cada observador describirá el sistema con una matriz densi-
dad diferente: ρα, ρβ, ργ,... La pregunta natural que surge en
este contexto es: ¿qué tienen en común todas las descripcio-
nes posibles de un mismo sistema cuántico? Es decir, ¿cuan
arbitraria es ρι? La respuesta es bastante intuitiva [15]: los
estados mezcla ρα, ρβ, ργ,..., tienen todos ellos al menos una
descomposición en la que aparece un estado puro común a
todas ellas. En particular, es imposible que dos observadores
describan el mismo sistema físico con estados puros diferen-
tes, ya que en ese caso la descomposición de la matriz den-
sidad es única. Si lo hicieran, o no son honestos, o tienen
datos falseados, o no son buenos científicos.

6. Sistemas compuestos. Correlaciones cuánticas
Los aspectos más antiintuitivos de la mecánica cuántica

aparecen cuando se consideran sistemas con varias partes o
subsistemas. En este caso hablaremos de sistemas compues-
tos. Por ejemplo, supongamos que tenemos dos fotones sufi-
cientemente separados en el espacio de forma que un obser-
vador α sólo mide sobre uno de ellos y otro observador β
sobre el otro. Esta configuración nos permite etiquetar con
los índices A y B cada uno de los fotones respectivamente.
Supongamos que estos dos fotones están en estados de pola-
rización |b〉A y |b〉B. Este sistema compuesto se describe con
el estado producto |ψ〉 = |b〉A |b〉B. También podríamos tener
un estado producto |b〉A |↔〉B o |g〉A |↔〉B, etc..

Es sabido que los fotones satisfacen la estadística de
Bose-Einstein y por lo tanto su función de ondas debería ser

simétrica bajo el intercambio de las magnitudes correspon-
dientes a cada partícula, en este caso las polarizaciones. Esto
no ocurre en los dos últimos ejemplos. Ello, no obstante, no
representa un problema, ya que sólo tenemos en cuenta la
polarización y no otras magnitudes, como la posición, que en
este caso se ha substituido por las etiquetas A y B asociadas
a los observadores locales α y β. Una vez marcados los foto-
nes, asociándolos a sus observadores, se pueden tratar como
no idénticos.

Los estados producto también aparecen en la descripción
íntegra de una sola partícula con espín o polarización al aña-
dir otras magnitudes. Así un fotón polarizado verticalmente
y localizado en x = a se describe con |b〉 |a〉. Es cuando se
describen varias partículas idénticas de forma íntegra que se
debe tener en cuenta la simetrización (o antisimetrización si
satisfacen la estadística de Fermi-Dirac) del estado.

El principio de superposición nos dice que si dos estados
son posibles, cualquier combinación lineal ha de ser posible.
En particular, puede haber un sistema descrito por el estado
puro

(2)

Es fácil comprobar que |ψ〉 no es estado producto y, por
lo tanto, ninguno de los fotones, por muy alejados que estén
uno del otro, admite una descripción completa por separado,
es decir, no se puede asociar una polarización definida a cada
uno de ellos. En estas circunstancias se dice que los fotones
están entrelazados y no admiten una descripción local com-
pleta. Esta característica exclusiva de la mecánica cuántica
es consecuencia del hecho que el espacio de Hilbert de siste-
mas compuestos sea el producto tensorial del espacio de
Hilbert de cada parte. En la mecánica clásica los sistemas
compuestos se describen en un espacio producto cartesiano
de los espacios de fases de cada una de las partes. Así la
dimensión del espacio crece exponencialmente con el núme-
ro de partes en el caso cuántico y sólo linealmente en el clá-
sico. Esta diferencia en el número de estados posibles junto
a la propiedad de entrelazamiento cuántico es lo que confie-
re a la mecánica cuántica su potencial computacional [16].

El estado (2) es un buen ejemplo para ilustrar gran parte
de las peculiaridades y paradojas que se dan en los sistemas
compuestos. Observemos, por ejemplo, que |ψ〉 también se
puede escribir como

(3)

Al igual que en el caso de estados mezcla discutidos en la
sección anterior, nuestra mentalidad clásica nos podría indu-
cir a intentar distinguir entre las descripciones (2) y (3). Es
un intento vano ya que el estado |ψ〉 es el mismo.

Analicemos ahora las medidas locales, es decir, las que se
realizan sobre una de las partes, y las consecuencias que de
ellas se puedan derivar. Supongamos que el observador α
realiza una medida local, es decir, sobre la parte A, con un
aparato � y obtiene el resultado |b〉. Esto ocurre con una
probabilidad del 50%. De la expresión (2) inferimos que si el
observador β midiese entonces la parte B con el aparato �
obtendría con certeza |b〉, aunque β, salvo que α le haya
informado, es ignorante de esta certeza. Si α hubiese obteni-
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do |↔〉 (lo que ocurre con el otro 50% de probabilidad), β
obtendría |↔〉 con total certeza. El estado |ψ〉 correlaciona
perfectamente los resultados de estas medidas locales.
Nótese que las mismas correlaciones entre estas medidas
locales se pueden obtener describiendo el sistema compues-
to con la matriz densidad

ρ�

que sólo contiene correlaciones clásicas. La situación es más
interesante cuando consideramos otro aparato de medida,
por ejemplo�× . Aquí podemos utilizar la representación (3),
y deducir fácilmente que si α obtiene |g〉 para A, β obtiene
|g〉 para B con certeza, y análogamente para un resultado en
la otra dirección ortogonal. De nuevo, se obtendrían los
mismos resultados si el sistema compuesto estuviese descrito
por el siguiente estado que sólo contiene correlaciones clásicas:

ρ�×

Como ρ� ≤ ρ�×, las dos descripciones en términos de
correlaciones clásicas son incompatibles entre ellas. Los
estados entrelazados presentan correlaciones que van más
allá de las clásicas y que se denominan correlaciones cuánti-
cas. éstas se pueden describir mediante conjuntos de correla-
ciones clásicas, pero que no son compatibles entre sí.

¿Cómo describe su fotón un observador local cuando
ignora la presencia del otro? El observador α puede suponer
que el observador β ha medido B con el aparato �. De la dis-
cusión anterior, la descripción del subsistema A por parte del
observador α, que desconoce el resultado de la medida de β, es

ρA�
α

El observador α también podría suponer que β ha medi-
do con el aparato �× . En este caso la descripción local sería

ρA�×
α

Obsérvese, que ρα
A� = ρA�×

α = ╖/2, donde g╖ es la matriz
identidad. Para cualquier medida que realizara β la descrip-
ción local de A por parte de α sería siempre la misma, dada
por la matriz densidad ρα

A. Como esta descripción no debe
depender de lo que haga β, debe ser también correcta cuan-
do β decide no medir. En el ejemplo estudiado, la matriz
densidad ρα

A es proporcional a la identidad, y ya hemos visto
en la sección anterior que corresponde a máxima ignorancia,
es decir, que la entropía de von Neumann, S(ρα

A.), es 1 bit.
Por otro lado, el estado inicial |ψ〉 es puro y por lo tanto de
entropía nula, S(|ψ〉 〈ψ|) = 0. Como es de esperar, toda la
información contenida en las correlaciones cuánticas de |ψ〉
se ha perdido irremediablemente al hacer una descripción
local. Esta pérdida objetiva de información contrasta con la
ignorancia subjetiva que contenían las matrices densidad
analizadas en la sección anterior. Sin embargo, la mecánica
cuántica trata por igual cualquier tipo de ignorancia, ya que
toda la información, y sólo ésta, está contenida en la matriz
densidad. La fórmula general para describir localmente una

parte A de un sistema compuesto descrito por una matriz
densidad ρ y que resume toda la discusión anterior es

(4)

donde la traza se realiza sobre el subespacio B. La interpre-
tación es sencilla: ignorar la parte B corresponde a sumar
sobre todos los posibles resultados de medidas en B pesados
con sus correspondientes probabilidades, y esto equivale a
hacer la traza sobre el subespacio B.

Otra pregunta interesante es ¿cómo describe un observa-
dor el otro subsistema? Antes de medir, el observador β des-
cribe el subsistema A por la misma expresión (4), que para el
estado (2) es

(5)

Esto se sigue, mutatis mutandis, por un razonamiento
análogo al que ha conducido a (4). Si β mide un observable
local y obtiene un determinado resultado, automáticamente
sabe cual es el estado de la parte A. En el caso que β mida �
y obtenga |b〉, el estado del subsistema A colapsa a |b〉, por
muy separados que estén los dos subsistemas, es decir,

(6)

Al medir, el observador β cambia drásticamente su des-
cripción de la parte A, que pasa de ser una matriz densidad
de máxima entropía (5) a un estado puro (6), que tiene
entropía cero. Este colapso instantáneo3 y a distancia, sin
medir sobre el subsistema, es sorprendente y explica la inco-
modidad de Einstein (“... spooky action at a distance...”). La
pregunta que nos planteamos ahora es si sirve para transmi-
tir información de forma instantánea. Esto, más que sorpren-
dente, como veremos, sería preocupante.

7. Transmisión de información. Conclusiones
La medida efectuada por β, discutida en el párrafo ante-

rior, daba como resultado el estado puro ρ′βA. Efectivamente,
si el observador α midiese con � obtendría |b〉. Esta medida
parece proporcionar a α información sobre el colapso causa-
do por la medida de β y, por lo tanto, se podría pensar en la
posibilidad de comunicación superlumínica.

Así β podría transmitir instantáneamente un bit de infor-
mación asociando el valor 0 a |b〉 y el 1a |↔〉. Obviamente
esto no es posible por el carácter aleatorio de los resultados
de la medida en B, que hace imposible que cuando β quiera
enviar el valor 0 el resultado de su medida sea |b〉 con segu-
ridad. De esta forma β sólo envía ruido, pero no información.

Lo que sí puede controlar β es qué medida realiza. Por lo
tanto podría asociar 0 a la medida � y 1 a la medida�×. Si α
pudiese discriminar entre los dos conjuntos de estados {|b〉,
|↔〉} (que resultan de la medida � en B) y {|g〉, |h〉} (que
resultan de la medida �× en B), efectivamente habría trans-
misión instantánea de un bit de información. Pero esto no es
posible ya que, como vimos en la sección anterior, la des-
cripción local ρα

A es independiente de lo que decida hacer β.
Por ello ninguna medida local de α permite adquirir la infor-
mación que β pretendía transmitir.
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3Recientemente se ha medido la velocidad a la que se produce el colapso, y se ha obtenido [17] una cota inferior de 1.5 × 104 c en el sistema de referen-
cia de la radiación de fondo.



Finalmente discutiremos un método que podría desafiar
el límite relativista de transmisión de información: el tele-
transporte cuántico [18]. No haremos una exposición deta-
llada del mismo, que requeriría mucho más espacio del que
disponemos aquí, pero sí presentaremos los aspectos más
relevantes. El teletransporte cuántico permite hacer desapa-
recer un estado cuántico de un lugar A para hacerlo aparecer
en otro arbitrariamente separado del primero B de forma
intacta (en condiciones ideales), sin que haya mediado un
transporte material del sistema físico. Para ello, dos observa-
dores, α y β, han de compartir un estado máximamente
entrelazado como (2). El observador α realiza una medida
conjunta de su parte del estado entrelazado y del que preten-
de teletransportar y comunica el resultado de su medida a β.
Con esta información β puede reconstruir de forma exacta el
estado que tenía α. Este resultado puede parecer turbador,
pero no es más que el reflejo de las propiedades ciertamente
antiintuitivas de la mecánica cuántica. El motivo de fondo es
el entrelazamiento del estado que comparten los observado-
res y la no-localidad del mismo. Sin embargo, de nuevo, no
hay forma de realizar una transmisión superlumínica: el
observador α debe comunicar el resultado de su medida a β
y esta información debe viajar con un soporte físico, y por lo
tanto no puede hacerlo a velocidades superiores a la de la
luz. Antes de que llegue esta información, la descripción del
observador β de su estado será una matriz densidad propor-
cional a la identidad como (2), es decir, la correspondiente a
máxima ignorancia. Sólo cuando le llega la información de
α podrá reconstruir el estado y completar el fenómeno del
teletransporte.

Si el marco de la mecánica cuántica hubiese permitido la
transmisión instantánea de información, ésta no hubiese ser-
vido de punto de partida para su version relativista, la teoría
cuántica de campos. La mecánica cuántica, información y
relatividad se relacionan de tal manera, que ninguna de ellas
parece poner en peligro los principios de las otras. Como
dice el premio Nobel Stephen Weinberg [19]: la física es de
una estructura asombrosamente rígida, no se puede alterar
una parte sin tener que cambiarlo todo. De momento, no
parece que haya motivos para cambiar, y sí para seguir
explorando las interrelaciones entre estas teorías, que nos
están permitiendo descubrir las posibilidades y las limitacio-

nes de la información en la física y de la física de la infor-
mación. La duda que nos queda es si los rasgos subjetivos de
la mecánica cuántica discutidos en este artículo, de connota-
ciones antropocéntricas, impiden que ésta sea el punto de
partida de una teoría final, o si son precisamente estos rasgos
los que le permitirían serlo.
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